α-Haloalkanesulfonyl Bromides in Organic Synthesis. 5. Versatile Reagents for the Synthesis of Conjugated Polyenes, Enones, and 1,3-Oxathiole 1,1-Dioxides

Eric Block,* ${ }^{\dagger}$ Mohammad Aslam, Venkatachalam Eswarakrishnan, Kassu Gebreyes, John Hutchinson, Rajeshwari Iyer, Jean-Alex Laffitte, and Alan Wall

Contribution from the Department of Chemistry, State University of New York at Albany, Albany, New York 12222. Received May 6, 1985.
Revised Manuscript Received March 13, 1986

Abstract

Haloalkanesulfonyl bromides including chloromethanesulfonyl bromide (1), bromomethanesulfonyl bromide (2), α-bromoethanesulfonyl bromide (3), and iodomethanesulfonyl bromide (4) undergo free radical addition to olefins giving adducts which upon treatment with base afford dienes by a process termed the vinylogous Ramberg-Bäcklund reaction. In appropriate cases regioselectivity and/or stereoselectivity is observed in both the first addition step and in subsequent base-promoted elimination steps. Using this two- or three-step procedure, 1-alkenes are converted into 1,3-alkadienes, 2-methyl-1-alkenes into 2 -al-kyl-1,3-butadienes, methylenecycloalkanes into 1-vinyl-1-cycloalkenes, cycloalkenes into 3-methylene-1-cycloalkenes, and 1 -methylcycloalkenes into 1,2 -dimethylenecycloalkanes among other examples. Reagents $\mathbf{1 - 4}$ can also be used to convert trimethylsilyl enol ethers into α-alkylidene ketones and 1,3-oxathiole 3,3-dioxides, 1,3-dienes into 1,3,5-trienes, and alkynes into enynes.

Base-induced conversion of α-haloalkyl sulfones into olefins (eq 1), known as the Ramberg-Bäcklund reaction, represents a syn-

thetically useful method for introducing unsaturation into a variety of organic compounds. ${ }^{1}$ Unfortunately, because the preparation of α-haloalkyl sulfones entails multistep procedures, e.g., preparation of sulfides followed by α-halogenation and oxidation or by oxidation and then α-halogenation, applications of the Ram-berg-Bäcklund reaction have generally been limited. We have discovered a new series of readily prepared reagents, α-haloalkanesulfonyl bromides, RCHXSO 2 Br , which package all the components required for the Ramberg-Bäcklund reaction into one reactive unit, requiring only an olefinic substrate and base and offering a convenient stereo- and regioselective approach to the synthesis of dienes and higher conjugated polyenes and enones, among other products. We describe below full details on the scope and mechanisms of our procedures. ${ }^{2}$

Synthesis of α-Haloalkanesulfonyl Bromides

Our hope was to design α-haloalkanesulfonyl reagents which would readily afford adducts with unsaturated compounds which in turn could undergo Ramberg-Bäcklund-type reactions. Since it was known that chloromethanesulfonyl chloride, $\mathrm{ClCH}_{2} \mathrm{SO}_{2} \mathrm{Cl}$, fails to add to unactivated olefins even in the presence of $\mathrm{Cu}(\mathrm{I})^{32}$ and bromomethanesulfonyl chloride, $\mathrm{BrCH}_{2} \mathrm{SO}_{2} \mathrm{Cl}$, shows only 10% addition to 1 -octene after irradiation for $1 \mathrm{~h}^{3 \mathrm{~b}}$ but that chloromethanesulfonyl bromide, $\mathrm{ClCH}_{2} \mathrm{SO}_{2} \mathrm{Br}$ (1) with tert-butyl hydroperoxide-zinc dichloride catalysis, does add to olefins, ${ }^{4}$ our attention was directed toward α-haloalkanesulfonyl bromides. An early report ${ }^{5}$ describes the preparation of bromomethanesulfonyl bromide ($\mathrm{BrCH}_{2} \mathrm{SO}_{2} \mathrm{Br}, 2$) and α-bromoethanesulfonyl bromide (3) in low yields by bromination of $1,3,5$-trithiane and $2,4,6$ -trimethyl-1,3,5-trithiane, respectively. We have found that 2 can be conveniently prepared in molar quantities in $42-48 \%$ yield by addition of 9.5 mol of bromine per mol of $1,3,5$-trithiane to an aqueous suspension of the latter compound at $40^{\circ} \mathrm{C}$ (eq 2). Compound 2 is a slightly yellow, distillable (bp $68^{\circ} \mathrm{C}(0.01 \mathrm{~mm})$),

[^0]stable oil. While compound $\mathbf{3}$ could be prepared in a manner similar to that used for 2, but in lower yield, from 2,4,6-tri-methyl-1,3,5-trithiane, a more efficient synthesis (66% overall yield) was developed involving treatment of α-bromoethanesulfonyl chloride ${ }^{6}$ with aqueous sodium sulfite followed by bromine (eq 3). Two other reagents required in this study, chloro- and iodomethanesulfonyl bromides (1^{4} and 4 , respectively), were synthesized as described in eq 4 and 5 .

Addition of α-Haloalkanesulfonyl Bromides to Olefins

Compound 2 was found to undergo a spontaneous, occasionally vigorously exothermic reaction upon mixing with olefins affording methylene dibromide and sulfur dioxide along with the olefin-2 adducts. In those cases in which the thermally induced reaction was slow to start, a free-radical initiator proved useful. However in order to better control the addition and minimize the undesired side reaction producing methylene bromide and sulfur dioxide,

[^1]it was preferable to dilute the olefin with an equal volume of methylene chloride, chill the solution to $-20^{\circ} \mathrm{C}$, mix this with an equivalent amount of $\mathbf{2}$ in cold methylene chloride, and irradiate the mixture in a Pyrex tube at $-20^{\circ} \mathrm{C}$ for 30 min . In most cases this procedure gave olefin-2 adducts in quantitative yields.

With mono-, 1,1-di-, and 1,1,2-trisubstituted olefins the addition is regiospecific, with attachment of bromine to the more substituted carbon, as illustrated by formation of products 5, 6, and 7, from

1-octene, 2-methyl-1-octene, and 2-methyl-2-butene, respectively. In the case of molecules possessing both $1,1-\mathrm{di}$ - and 1,1,2-trisubstituted double bonds, addition occurs exclusively to the less hindered 1,1 -disubstituted double bond, as indicated by the formation of 8 from 2,6-dimethyl-1,5-heptadiene. Even unsymmetrical 1,2-disubstituted olefins show a high degree of regioselectivity in the addition, e.g., as seen by the formation of 9 as the major product (79%) from addition of 2 to 2 -octene.

Single or double addition of 2 to diolefins can be achieved depending on the stoichiometry used. If 2 equiv of 2 are used per mol of diolefin, good yields of bis-adducts are obtained. If 1 equiv of 2 is used, or in some cases excess diolefin, addition of a single equivalent of 2 occurs. In the case of 1,5-cyclooctadiene, no products resulting from intramolecular rearrangement could be detected when 2 was added to an excess of the diene. On the other hand when 2 was reacted with excess nonbornadiene a $1: 1$ mixture of endo-6-bromo-exo-5-norbornen-2-yl bromomethyl sulfone (10) and 5-bromo-3-nortricyclyl bromomethyl sulfone (exo/endo mixture) (11) was isolated in 96% yield (eq 6).

The above data are consistent with the involvement of a free radical chain reaction detailed in Scheme I, analogous to free radical addition of other sulfonyl halides. ${ }^{7}$ The superiority of sulfonyl bromide 2 compared to analogous sulfonyl chlorides is due to the weaker, more light-sensitive $\mathrm{S}-\mathrm{Br}$ bond; it is also fortunate that the activation energy for the desulfonylation step (Scheme I, step d) is greater than that for the olefin-addition step (Scheme I, step b) so that desulfonylation is noncompetitive at $-20^{\circ} \mathrm{C}$. The alkyl substituents in α-haloalkanesulfonyl bromides have little effect on the efficiency of olefin addition; chloro compound 1, α-bromoethyl compound 3 , and iodo compound 4 all give excellent yields of olefin adducts. On the basis of previous studies of radical addition of benzenesulfonyl halides to norbornadiene,? the $1: 1$ ratio of $\mathbf{1 0} / \mathbf{1 1}$ suggests that $\mathbf{2}$ is a more efficient radical chain transfer agent than benzenesulfonyl bromide.

[^2]Scheme I

$$
\begin{equation*}
\mathrm{BrCH}_{2} \mathrm{SO}_{2} \mathrm{Br} \xrightarrow{h \nu} \mathrm{BrCH}_{2} \mathrm{SO}_{2}{ }^{-}+\mathrm{Br}^{-} \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{BrCH}_{2} \mathrm{SO}_{2}^{\cdot}+\mathrm{RCH}=\mathrm{CH}_{2} \rightarrow \mathrm{R} \dot{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Br} \tag{b}
\end{equation*}
$$

$\mathrm{R} \dot{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{BrCH}_{2} \mathrm{SO}_{2} \mathrm{Br} \rightarrow$
$\mathrm{RCHBrCH}_{2} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{BrCH}_{2} \mathrm{SO}_{2}{ }^{\circ}$

$$
\begin{gather*}
\mathrm{BrCH}_{2} \mathrm{SO}_{2}{ }^{-} \rightarrow \mathrm{BrCH}_{2}{ }^{-}+\mathrm{SO}_{2} \tag{d}\\
\mathrm{BrCH}_{2}{ }^{-}+\mathrm{BrCH}_{2} \mathrm{SO}_{2} \mathrm{Br} \rightarrow \mathrm{CH}_{2} \mathrm{Br}_{2}+\mathrm{BrCH}_{2} \mathrm{SO}_{2}^{*}
\end{gather*}
$$

We find that reagent 2 adds smoothly to the double bonds in unsaturated alcohols without prior protection of the OH group; an application of this reaction in a short synthesis of the sex pheromone of the red bollworm moth is given below. Reagent 2 also adds smoothly to allyltrimethylsilane and diallyldimethylsilane without complications due to elimination of the silyl group, as is observed with use of methanesulfonyl chloride/cuprous bromide (eq 7). ${ }^{8}$ On the other hand, loss of the trimethylstannyl

group is observed on reaction of 2 with allyl trimethylstannane (eq 8).

Base Treatment of the α-Haloalkanesulfonyl Bromide-Olefin Adducts: The Vinylogous Ramberg-Bäcklund Reaction

Addition of 2 to olefins and subsequent reaction of the adducts with base is illustrated with l-octene. Thus, 1 -octene, diluted with an equal volume of methylene chloride and irradiated in a Pyrex tube for 30 min at $-20^{\circ} \mathrm{C}$ after addition of an equivalent amount of 2 , afforded a single $1: 1$ olefin- $\mathbf{2}$ adduct in 94% yield. Direct treatment of this crude adduct with triethylamine in methylene chloride at $0^{\circ} \mathrm{C}$ for 15 min gave in 97% yield a $10: 1$ mixture of (E) - and (Z)-bromomethyl 1 -octenyl sulfones (12E and 12Z) (R $=n-\mathrm{C}_{5} \mathrm{H}_{11}$), respectively. The use of 1,5 -diazabicyclo[4.3.0]-non-5-ene (DBN) at $-23^{\circ} \mathrm{C}$ in place of triethylamine gave a mixture containing $>97 \%$ 12E. Crystallization readily afforded a pure sample of 12 E while isomer 12 Z could be isolated from the mother liquor by preparative HPLC. Treatment of 12E with 2.5 equiv of potassium tert-butoxide in $7: 3 t-\mathrm{BuOH} / \mathrm{THF}$ at -20 ${ }^{\circ} \mathrm{C}$ for 1 h gave in 59% distilled yield a 83:17 mixture of (Z) - and (E) - 1,3-nonadiene. ${ }^{\text {Ila }}$ In a similar manner $12 Z$ gave in 61% yield a $6: 94$ mixture of (Z) - and $(E)-1,3$-nonadiene. When lithium or cesium tert-butoxide was substituted for potassium tert-butoxide in the reaction with 12 E , the (Z) - to (E)-1,3-nonadiene ratio was $85: 15$ and $75: 25$, respectively, indicating only a minor change in stereoselectivity with metal ion.

The stereoselectivity of the reaction of 12 E with base, which may be termed a "vinylogous Ramberg-Bäcklund reaction", can be attributed to a stabilizing, attractive interaction between the developing negative charge at the α-position and the CH_{2} group at the δ-position (a "syn effect") favoring transition state $12 \mathrm{E}^{\prime}$

[^3]over $\mathbf{1 2} \mathbf{E}^{\prime \prime}$ for deprotonation (eq 9 and 10). In a related example,

\qquad
 (10)
it has been reported that lithium dibutyl cuprate adds to (E) -1,3-butadienyl p-tolyl sulfone giving exclusively (Z)-2-octenyl p-tolyl sulfone. ${ }^{10}$ In the case of 12 Z the possibility of a stabilizing syn interaction between the α - and δ-position is precluded for steric reasons (note the steric congestion in transition state 12Z' leading to (E)-1,3-nonadiene (eq 11)). The syn effect is still seen with

replacement of the $\delta-\mathrm{CH}_{2}$ in 12E by oxygen but not by a phenyl group (eq 12 and 13). On the other hand, replacement of the

α-hydrogen in (E)-1-alkenyl bromomethyl sulfones by an alkyl group (see eq 14) results in exclusive formation of the E diene

upon treatment with base; syn interaction is sterically precluded in this case (see 13). Table I illustrates the application of the

vinylogous Ramberg-Bäcklund reaction to the synthesis of terminal, branched internal, and heterosubstituted acyclic 1,3-dienes and bis 1,3-dienes, as well as 1 -vinyl and 3 -methylene 1 -cyclo-

Figure 1. Perspective view of $(E)-1-[[($ bromomethyl $)$ sulfonyl]-methylene]-3-methylcyclohexane showing the atom-labeling scheme. Relevant bond distances: $\mathrm{C} 1-\mathrm{C} 8,1.32$ (1) \AA; $\mathrm{Br}-\mathrm{C} 9,1.891$ (8) $\AA ; \mathrm{S}-\mathrm{C} 9$, 1.784 (10) $\AA ; \mathrm{O} 1 \cdots \mathrm{H} 2 \mathrm{~B}, 2.51 \AA$ (nonbonded closest $\mathrm{O}-\mathrm{H}$ distance); for other data see supplementary material.
alkenes and 1,2-dimethylenecycloalkanes. Among the examples is a simple synthesis from 10 -undecenol of the acetate of (E,-Z)-9,11-dodecadien-1-ol (entry 24), the sex pheromone of the red bollworm moth, Diparopsis castanea. While a number of other synthesis of this pheromone have been reported ${ }^{11}$ our approach is particularly attractive because of its simplicity and high yield, the low cost of reagents, and its use of commerically available starting material. Also noteworthy is the conversion of allyltrimethylsilane and diallyldimethylsilane into 1-(trimethylsilyl)-1,3-butadiene ${ }^{11 f, g}$ and bis(1,3-butadienyl)dimethylsilane (entries 25 and 31), making these dienes readily available. Another application of our synthetic procedure is the attachment of methylene groups to interior carbon atoms in chains (e.g., entries 11, 12) or to ring carbon atoms (entries 17-19) providing access to compounds that would be otherwise difficult to prepare.
α, β-Unsaturated bromomethyl sulfones such as 15a (eq 15)

could undergo vinylogous Ramberg-Bäcklund reaction by deprotonation syn (γ) and/or anti $\left(\gamma^{\prime}\right)$ to the sulfonyl group. In unsymmetrical systems this could give mixtures of products. Addition of 2 to 3 -methyl-1-methylenecyclohexane ($\mathbf{1 4 b}$; prepared from the corresponding ketone with $\mathrm{CH}_{2} \mathrm{Br}_{2}-\mathrm{TiCl}_{4}-\mathrm{Zn}^{12}$ as described in the Experimental Section) followed by dehydrobromination with triethylamine gave a $1: 1$ mixture of $\mathbf{1 5 b}$ and 15b' in 94% overall yield. Fractional recrystallization of the mixture from CCl_{4} afforded $\mathbf{1 5 b}, \mathrm{mp} 79-80^{\circ} \mathrm{C}$, homogeneous by capillary GC and HPLC. The structure of $\mathbf{1 5 b}$ was established by X-ray crystallography, as shown in Figure 1 (see supplementary ma-
(12) Lombardo, L. Tetrahedron Lett. 1982, 23, 4293-4296.

Table I. Diene, Polyene, and Enyne Synthesis with Bromomethanesulfonyl Bromide

entry	substrate	product ($\mathrm{Z}: \mathrm{E}$ ratio)	yield, \% ${ }^{\text {a,u }}$
1	$n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CH}=\mathrm{CH}_{2}$	$n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}$ (2:1)	$38\left(52^{43}\right)$
2	$n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}=\mathrm{CH}_{2}$	$n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}(2: 1)$	61 (27 ${ }^{11 \mathrm{a}}$)
3	$n-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{CH}=\mathrm{CH}_{2}$	$n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}(2: 1)$	52 (8144)
4	$n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{C}_{5} \mathrm{H}_{11}-n$	$79^{\text {b }}$ (28^{55})
5	$n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{13}-n$	$73^{c}\left(49^{40}\right)$
6	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	$65^{d}\left(10^{56}\right)$
7	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	
8	$n-\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{C}_{9} \mathrm{H}_{19}-n$	$59^{\prime}\left(48^{45}\right)$
9	$c-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{11}{ }^{-\mathrm{C}}$	$62\left(5^{46}\right)$
10	(E) $-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHC}_{2} \mathrm{H}_{5}$	(E) $-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{C}_{2} \mathrm{H}_{5}$	$58^{8}\left(30^{47}\right)$
11	(E) $-n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CH}=\mathrm{CH}-n-\mathrm{C}_{4} \mathrm{H}_{9}$	(E) $-n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{C}_{4} \mathrm{H}_{9}-n$	68^{8}
12	(E) $-n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}=\mathrm{CH}-n-\mathrm{C}_{6} \mathrm{H}_{13}$	(E) $-n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CH}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{13}-n$	718
13	(E) $-n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CH}=\mathrm{CHCH}_{3}$	$\begin{gathered} \left.(E)-n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CH}=\mathrm{CHC}_{2} \mathrm{CH}_{3}\right)=\mathrm{CH}_{2}+ \\ \mathrm{CH}_{2}=\mathrm{CHC}\left(=\mathrm{CH}_{2}\right) \mathrm{C}_{5} \mathrm{H}_{11}-n \end{gathered}$	$\begin{aligned} & 52\left(16^{48}\right) \\ & 15\left(28^{55}\right) \end{aligned}$
14			53 (10049)
15			$74(-50)$
16			75
17			$41^{h}\left(19^{41}\right)$
18			$31^{h}\left(13^{41}\right)$
19			$49^{n}\left(28^{41}\right)$
20			$51^{h}\left(58^{39}\right)$
21			43 (30 ${ }^{51}$)
22	$\mathrm{PhCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{PhCH}=\mathrm{CHCH}=\mathrm{CH}_{2}(1: 8)$	$85\left(51^{52}\right)$
23	$\mathrm{PhOCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{PhOCH}=\mathrm{CHCH}=\mathrm{CH}_{2}(9: 1)$	54 (34 ${ }^{42}$)
24	$\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}(5: 1)$	$86\left(54^{11}\right)$
25	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCH}=\mathrm{CHCH}=\mathrm{CH}_{2}(1: 10)$	$41\left(37^{53}\right)$
26			$35^{\text {h. }}$
27	$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	$49^{i, j, k}$
28	$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	$57^{i .1}\left(50^{54}\right)$
29	$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	$40^{l . m}\left(14^{54}\right)$
30	$\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	41^{l}
31	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\left(\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}\right)_{2}$	$38^{\text {i, }}$ I
32	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	$\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	$22^{n}\left(28^{23}\right)$
33	$n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCH}=\mathrm{CH}_{2}(1.7: 1 \mathrm{EZ} / E E)$	$16^{\circ}\left(22^{25}\right)$
34	${ }^{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCH}=\mathrm{CH}_{2}(1.1: 1 E Z / E E)$	$24^{p}\left(47^{24}\right)$
35	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCH}=\mathrm{CH}_{2}(E, E)$	21 (39 ${ }^{57}$)
36	(E) $-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHC}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{CH}_{2}$	$\begin{gathered} \mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{C}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}=\mathrm{CH}_{2}+ \\ \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHC}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)=\mathrm{CHCH}_{3} \end{gathered}$	$\begin{aligned} & 33^{9} \\ & 17^{9} \end{aligned}$
37			47 (61 ${ }^{28}$)
38			50
39			10^{9}
40			53
41	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{i}$	$\mathrm{CH}_{2}=\mathrm{CH}(\mathrm{CH}=\mathrm{CH})_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$8^{5}\left(52^{296, c}\right)$
42	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{\prime}$	$\mathrm{CH}_{2}=\mathrm{CH}(\mathrm{CH}=\mathrm{CH})_{3} \mathrm{CH}_{3}$	$8^{1}\left(60^{58}\right)$
43	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{\prime}$	$\mathrm{CH}_{2}=\mathrm{CH}(\mathrm{CH}=\mathrm{CH})_{3} \mathrm{CH}_{3}$	$23\left(60^{58}\right)$
44	$\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}{ }^{2}$	$\mathrm{CH}_{2}=\mathrm{CH}(\mathrm{CH}=\mathrm{CH})_{3} \mathrm{CH}=\mathrm{CH}_{2}$	$14^{4}\left(9^{292 a}\right)$
45	$\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}{ }^{1}$	$\mathrm{CH}_{2}=\mathrm{CH}(\mathrm{CH}=\mathrm{CH})_{4} \mathrm{CH}=\mathrm{CH}_{2}$	$23^{\prime}\left(1^{299}\right)$
46	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CC}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{CH}_{2}$	39
47	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{C}=\mathrm{CH}$	$\mathrm{C}_{4} \mathrm{H} 9 \mathrm{C}=\mathrm{CCH}=\mathrm{CH}_{2}$	29 (63 ${ }^{59}$)

[^4]terial). Preparative HPLC of the mother liquor from the above recrystallization afforded $\mathbf{1 5} \mathbf{h}^{\prime}$, chromatographically and spectroscopically different from 15b. Separate treatment of 15b with $\mathrm{KO}-t$ - Bu and $\mathbf{1 5 b}^{\prime}$ with LiO- $t-\mathrm{Bu}$ in $t-\mathrm{BuOH} / \mathrm{THF}$ gave, respectively, 5 -methyl-1-vinylcyclohexene (16b) (GC retention time 8.02 min at $70^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR triplet at $\delta 5.66$ due to ring $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}$) and 3-methyl-1-vinylcyclohexene ($\mathbf{1 6 b}$) (GC retention time 7.90 min at $70^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR doublet at $\delta 5.59$ due to ring $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{C}$), in each case regiospecifically in $77-78 \%$ yield. Reaction of $16 \mathbf{b}^{\prime}$ with LiO- t-Bu and excess 12-crown-4 gave a $4: 1$ mixture of $\mathbf{1 6 b} / \mathbf{1 6 b}$ while KO- t-Bu gave a 62:38 mixture of $\mathbf{1 6} \mathbf{b}^{\prime} / \mathbf{1 6 b}$.

Treatment of 2 -methyl-1-octene (17, eq 16) with 2 followed

$18 \mathrm{a}^{t}$
20
by triethylamine gave in 87% yield a $2.8: 1$ mixture of 18 a and $18 a^{\prime}$ which could be separated by HPLC. Compounds 18a and $18 \mathrm{a}^{\prime}$, showing ${ }^{1} \mathrm{H}$ NMR methyl resonances at 2.21 and 2.01 ppm , respectively, can be characterized as (E) - and (Z)-2-methyl-1octenyl bromomethyl sulfone, respectively, based on the known deshielding of alkyl groups syn to the sulfonyl group in α, β ethylenic sulfones. ${ }^{13}$ Treatment of $\mathbf{1 8 a}$ with $\mathrm{KO}-t-\mathrm{Bu}$ or $\mathrm{LiO}-t-\mathrm{Bu}$ led regiospecifically to 3 -methylenenon-1-ene (19) while $\mathbf{1 8 a}^{\prime}$ gave mixtures of 19 and (E, Z)-3-methyl-1,3-nonadiene (20), in ratios varying from 7:93 ($\mathrm{LiO}-t-\mathrm{Bu}$) to 13:87 $\left(\mathrm{LiO}-t-\mathrm{Am}^{\left.-\mathrm{C}_{6} \mathrm{H}_{6}\right) \text { to 29:71 }}\right.$ ($\mathrm{LiO}-t-\mathrm{Bu}, 12$-crown-4) to $68: 32$ ($\mathrm{KO}-t-\mathrm{Bu}$).

The above observations on the regioselective deprotonation of bromomethyl sulfones $\mathbf{1 5 b}, \mathbf{b}^{\prime}$ and $18 \mathrm{a}, \mathbf{a}^{\prime}$ can be rationalized as follows: (1) Steric factors should favor deprotonation of compounds $\mathbf{1 5 b}, \mathbf{b}^{\prime}$ and 18a, \mathbf{a}^{\prime} with tert-alkoxides at the less hindered positions (remote from the R group) giving $\mathbf{1 6 b}$ and 19 , in accord with earlier studies on enolate generation in analogous systems (treatment of 3-methylcyclohexanone with trityllithium is reported to give an $82: 18$ ratio of the 3 -methyl to 5 -methyl enolate ${ }^{14}$). (2) Coordination of the cations of alkali tert-butoxides by sulfonyl oxygen should favor deprotonation syn to the sulfonyl group. In particular we suggest that the lithium cation of LiO-t-Bu coordinates to the sulfonyl oxygen in $\mathbf{1 5 b}^{\prime}$ and $18 a^{\prime}$ promoting removal of the γ-proton despite steric hindrance at that position. The X-ray structure of $\mathbf{1 5 b}$ indicates that the sulfonyl oxygen is within 2.51 \AA of the closest ring hydrogen, a value within the sum of the van der Waals radii of O and H , which should facilitate the type of coordination depicted in eq 17. When the extent of coordination

is diminished by substituting the "softer" (HSAB terminology) potassium for lithium or by complexing lithium with 12-crown-4, the relative proportion of α-deprotonation decreases. Our results are of interest because the sulfone group is not usually thought of as a group capable of metal coordination. ${ }^{15}$ Eisch has previously

[^5]noted without comment the greater kinetic activity of syn vs. anti methyl groups in α, β-ethylenic sulfones, presumably reflecting more favorable lithium coordination in the syn systems. ${ }^{16}$ Similar kinetic acidity effects are also seen in α, β-unsaturated esters. ${ }^{17}$

For synthetic purposes, the crude mixture of isomers 18a, a^{\prime} may be used to prepare 19. Thus when a solution of mixed isomers in t - $\mathrm{BuOH} / \mathrm{THF}$ is added to 3 equiv of KO- t - Bu in t - $\mathrm{BuOH} / \mathrm{THF}$ at $-23^{\circ} \mathrm{C}$ and the mixture is worked up, 19 is obtained in 84% yield and 91% purity. Additional examples of syntheses of 2-alkyl-1,3-butadienes by this route are given in Table I. Entry 6 is of interest because it demonstrates the preference of reagent 2 for addition to the terminal rather than internal double bond while entry 9 demonstrates that deprotonation can be regiospecific in particularly hindered cases.

While all of the above procedures employ sequential treatment of the olefin- $\mathbf{2}$ adducts with triethylamine followed by potassium tert-butoxide, it is possible to go directly from the adducts to dienes by using an excess of the latter base, as illustrated by the synthesis of 1,2-dimethylenecyclohexane from 1-methylcyclohexene (see Experimental Section). The advantages of the two-base procedure, when it can be employed, is that it conserves the more expensive tert-butoxide base and generally gives higher diene yields.

Reaction of α-Haloalkanesulfonyl Bromides with
Trimethylsilyl Enol Ethers: Synthesis of α-Alkylidene Ketones and 1,3-Oxathiole 3,3-Dioxides

It was of interest to determine if reagents 1-4 could be added to olefins substituted with oxygen such as enol acetates, enol ethers, or enol silyl ethers since the initial adducts with these sulfonyl bromides might give α-haloalkylsulfonyl ketones or aldehydes upon hydrolysis (eq 18). While vinyl acetate and 1-cycloheptenyl

$$
\begin{align*}
& \mathrm{ROCR}^{\prime}=\mathrm{CH}_{2}+\mathrm{BrCH}_{2} \mathrm{SO}_{2} \mathrm{Br} \rightarrow \\
& \mathrm{ROCR}^{\prime} \mathrm{BrCH}_{2} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{R}^{\prime} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{Br} \tag{18}
\end{align*}
$$

acetate proved unreactive toward 2, 1-(trimethylsiloxy)-1-cycloheptene (21) reacted readily with 2 affording directly a mixture of 2-[(bromomethyl)sulfonyl]cycloheptanone (22) and cycloheptanone. Cycloheptanone presumably arises via hydrolysis of silyl ether 21 ; its formation can be prevented by conducting the addition of 2 to 21 in ethylene oxide (an excellent acid scavenger which is unreactive toward free radicals) as solvent. Thus irradiation of a solution of 2 and 21 in ethylene oxide at $-15^{\circ} \mathrm{C}$ and concentration in vacuo gave directly $\mathbf{2 2}$ in 77% isolated yield. We suggest that a free radical chain reaction is involved in the formation of 22 as depicted in Scheme II. It should be noted that alkanesulfonyl chlorides undergo $\mathrm{Cu}(\mathrm{I})$-catalyzed reaction with trimethylsilyl enol ethers giving β-keto sulfones and alkanesulfinyl chlorides undergo analogous reaction giving β-keto sulfoxides. ${ }^{18}$ However, we were not able to get chloromethanesulfonyl chloride to add to silyl ether 21 under a variety of conditions.
Scheme II

$$
\begin{equation*}
\mathrm{XCH}_{2} \mathrm{SO}_{2} \mathrm{Br} \xrightarrow{h \nu} \mathrm{XCH}_{2} \mathrm{SO}_{2}^{-}+\mathrm{Br}^{-} \tag{a}
\end{equation*}
$$

$$
\mathrm{XCH}_{2} \mathrm{SO}_{2}^{\cdot}+\mathrm{Me}_{3} \mathrm{SiOCR}=\underset{\mathrm{Me}_{3} \mathrm{SiOCRCHR}^{\prime} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{X}}{\mathrm{CHR}}
$$

$\mathrm{Me}_{3} \mathrm{SiO} \dot{\mathrm{C}} \mathrm{CCHR} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{X} \rightarrow$
$\mathrm{Me}_{3} \mathrm{Si}^{\bullet}+\mathrm{RC}(\mathrm{O}) \mathrm{CHR}^{\prime} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{X}$ (c)
$\mathrm{Me}_{3} \mathrm{Si}^{\bullet}+\mathrm{XCH}_{2} \mathrm{SO}_{2} \mathrm{Br} \rightarrow \mathrm{Me}_{3} \mathrm{SiBr}+\mathrm{XCH}_{2} \mathrm{SO}_{2}{ }^{-}$

[^6]Table II. Synthesis of α-Alkylidene Ketones and 1,3-Oxathiole 3,3-Dioxides from Trimethylsilyl Enol Ethers

entry	R^{\prime}		$\mathrm{R}^{\prime \prime}$	R	X	conditions ${ }^{\text {a,b }}$	products (overall isolated yield, \%)
,		$\left(\mathrm{CH}_{2}\right)_{5}$		H	Br	A	I (61), II (17)
2		$\left(\mathrm{CH}_{2}\right)_{5}$		H	Br	B	I (45), II (16)
3		$\left(\mathrm{CH}_{2}\right)_{5}$		H	Br	C	I (9), II (70)
4		$\left(\mathrm{CH}_{2}\right)_{5}$		H	Cl	B	I (17), II (42)
5		$\left(\mathrm{CH}_{2}\right)_{5}$		H	Cl	C	I (-), II (54)
6		$\left(\mathrm{CH}_{2}\right)_{5}$		H	I	B	I (68), II (1)
7		$\left(\mathrm{CH}_{2}\right)_{5}$		CH_{3}	Br	C	I (13), ${ }^{c}$ II (2)
8		$\left(\mathrm{CH}_{2}\right)_{4}$		H	Br	B	I (19), II (56)
9		$\left(\mathrm{CH}_{2}\right)_{4}$		H	Br	C	I (-), II (46)
10		$\left(\mathrm{CH}_{2}\right)_{4}$		H	I	B	I (32), II (32)
11		$\left(\mathrm{CH}_{2}\right)_{4}$		CH_{3}	Br	C	I (12), ${ }^{d}$ II (6)
12		$\left(\mathrm{CH}_{2}\right)_{3}$		H	Br	B	I (30), II (-)
13	Ph		H	H	Br	B	I (-), II (43)
14	Ph		H	H	Cl	C	I (-), II (50)
15	$t-\mathrm{Bu}$		H	H	Br	B	I (29), II (55)
16	t-Bu		H	H	Cl	C	I (-), II (57)
17	t-Bu		H	H	I	B	I (38), II (10)
18	$\mathrm{C}_{2} \mathrm{H}_{5}$		CH_{3}	H	Br	B	I (41), II (5)
19	$\mathrm{C}_{2} \mathrm{H}_{5}$		CH_{3}	H	Cl	C	I (-), II (54)

${ }^{a}$ Solvent is ethylene oxide (step 1); see Experimental Section for details. ${ }^{b} \mathrm{DBN}$ is base (step 2); $\mathrm{A}=\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C} ; \mathrm{B}=\mathrm{CH}_{2} \mathrm{Cl}_{2},-23{ }^{\circ} \mathrm{C} ; \mathrm{C}$ $=\mathrm{EtOH}, 23^{\circ} \mathrm{C}$. ${ }^{c} 12: 1$ ratio of E to Z isomer. ${ }^{d} 20: 1 E$ to Z ratio.

Treatment of a methylene chloride solution of 22 with DBN at $-78^{\circ} \mathrm{C}$ followed by warming, washing with dilute acid, and distillation gave 2-methylenecycloheptanone ${ }^{19}$ (23) in 77% yield (eq 19). A second compound, 8,10-oxathiabicyclo[5.3.0]dec-1-

(7)-ene 10,10 -dioxide (24), a novel fused ring 1,3-oxathiole 3,3dioxide, was isolated from the distillation residue in 21% yield as colorless needles. A higher yield of heterocycle 24 (88%) together with 12% of $\mathbf{2 3}$ was produced on reaction of an ethanol solution of 22 with DBN at room temperature. We have also utilized sulfonyl bromides 1,3 , and 4 in the preparation of α alkylidene ketones and 1,3-oxathiole 3,3-dioxides. Thus reaction of 21 with 1,3 , and 4 gave $2-[($ chloromethylsulfonyl $]$ cycloheptanone (25) (67% yield), 2-[(1-bromoethyl)sulfonyl]cycloheptanone (26) (22% yield), and $2-[($ iodomethyl sulfonyl] cycloheptanone (27) (100% yield), respectively. Treatment of compound 25 with DBN in ethanol at room temperature gave 24 free from 23, in 79% yield. On the other hand, treatment of 27 with 2.5 equiv of DBN in methylene chloride at $-23^{\circ} \mathrm{C}$ for 2 h gave $\mathbf{2 3}$ in 83% yield, with only trace amounts of 24. Finally, treatment of 2-[(1-bromoethyl)sulfonyl]cycloheptanone with DBN in ethanol at room temperature led to a mixture of $39 \%(E)$ - and 3% (Z)- α-ethylidenecycloheptanone and 6% 9-methyl-8, 10 -oxathia-bicyclo[5.3.0]dec-1 (7)-ene 10,10 -dioxide (28). This latter compound could also be obtained in 74% isolated yield by sequential treatment of 24 with n-butyllithium (THF, $-78^{\circ} \mathrm{C}$) and methyl iodide. Other examples of the preparation of α-alkylidene ketones and 1,3-oxathiole 3,3-dioxides from trimethylsilyl enol ethers are given in Table II.

[^7]

Figure 2. Perspective view of 7,9-oxathiabicyclo[4.3.0]non-1(6)-ene 9,9 -dioxide showing the atom-labeling scheme. Hydrogen atoms have been omitted for clarity. Relevant bond distances and angles: S-C1, 1.809 (5) $\AA ; \mathrm{S}-\mathrm{C} 2,1.727$ (5) $\AA ; \mathrm{S}-\mathrm{O} 2,1.430$ (3) $\AA ; \mathrm{C} 1-\mathrm{O} 1,1.414$ (6) $\AA ; \mathrm{O} 1-\mathrm{C} 7,1.373$ (6) $\AA ; \mathrm{C} 2-\mathrm{C} 7,1.330$ (6) $\AA ; \mathrm{C} 1-\mathrm{S}-\mathrm{C} 2,92.1$ (2) ${ }^{\circ}$ $\mathrm{S}-\mathrm{Cl}-\mathrm{Ol}, 107.4(3)^{\circ}$; $\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7,112.0(3)^{\circ}$; O1-C7-2C2, $118.8(4)^{\circ}$; C7-C2-S, 109.7 (3) ${ }^{\circ}$; for other data see supplementary material.

The 1,3-oxathiole 3,3 -dioxide formed from 1-(trimethylsil-oxy)-1-cyclohexene, 7,9-oxathiabicyclo[4.3.0]non-5-ene 9,9-dioxide, was further characterized by X-ray crystallography. The molecular geometry and the atom labeling are shown in Figure 2. The five-membered ring $\mathrm{S}-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 2$ is rigorously planar, occupying the crystallographic mirror plane through $y=$ $1 / 4$. The $\mathrm{S}-\mathrm{C} 2$ distance is significantly shorter than $\mathrm{S}-\mathrm{C} 1,1.727$ (5) and 1.809 (5) \AA, respectively, as a consequence of sp^{2} hybridization at C 2 . The sulfone oxygen atoms O 2 and O^{\prime} are crystallographically equivalent, related through mirror symmetry. The six-membered ring $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ is nonplanar, with C 4 resting off the crystallographic mirror plane and disordered about the molecular plane. Other pertinent structural features are summarized in the figure caption.

As shown in eq 20 , we suggest that reaction of 22, 25, and 27 with base generates an enolate ion which may undergo either intramolecular C-alkylation, giving an episulfone which loses sulfur dioxide affording enone 23 (Ramberg-Bäcklund reaction), or O -alkylation, giving heterocycle 24 . The preference for O -al-

kylation in 25 (Cl leaving group) and C -alkylation in 27 (I leaving group) is in accord with the hard-soft acid-base principle. ${ }^{20}$ The data in Table II suggest that O -alkylation is also favored by polar solvents, conjugation, and conformational factors but is disfavored when the Br is on a secondary carbon (steric effects ${ }^{21}$) and with smaller rings where the resultant heterocycle would be strained. While a few syntheses of 1,3-oxathiole 3,3-dioxides are known ${ }^{22}$ our method should be useful because of its simplicity.

Reaction of α-Haloalkanesulfonyl Bromides and Conjugated Dienes: Synthesis of Conjugated Trienes and Polyenes

We have found that the two- or three-step olefin to conjugated diene transformation using $1-4 /$ base can be extended to the conversion of conjugated dienes to conjugated trienes (eq 21),

representing an extension of the "vinylogous Ramberg-Bäcklund reaction" to include the case with two intervening double bonds. Thus, light-initiated addition of 2 to (E)-1,3-pentadiene in methylene chloride followed by treatment of the adduct with triethylamine gave (E, E)-1,3-pentadienyl bromomethyl sulfone in 85% yield. Reaction of the latter dienyl sulfone with 2.25 equiv of potassium tert-butoxide in tert-butyl alcohol gave $(E)-1,3,5$ hexatriene containing less than 1% of the Z isomer in 26% isolated yield. By comparison, the overall yield for the nonstereoselective and somewhat longer Organic Syntheses preparation of 1,3,5hexatriene is $25 \% .^{23}$

A sequence similar to that described above gave, from 1,3decadiene in 97% yield, (E, E)-1,3-decadienyl bromomethyl sulfone, which upon treatment with potassium tert-butoxide in tert-butyl alcohol/tetrahydrofuran under dilute conditions gave in 24% yield a 1.1:1 mixture of (E, Z) - and (E, E)-1,3,5-undecatriene, components of the essential oil from the Hawaiian seaweed Dictyopteris. ${ }^{24}$ Under these same conditions 1,3 -heptadiene was converted into a 1.7:1 mixture of (E, Z) - and (E, E)-1,3,5-octatriene in 16% overall yield. The former octatriene is known as fucoserratene, the female sex attractant from the ova of the seaweed Fucus serratus L. ${ }^{25}$

The stereoselectivity seen in the formation of linear trienes can be rationalized along lines similar to those used above to explain the stereoselectivity seen in diene synthesis. While the triene 3,4-double bond is derived with retention of stereochemistry from the E-1,2-double bond in the bromomethyl dienyl sulfones as indicated by the preferred formation of $(E)-1,3,5$-hexatriene, the

[^8]modest preference of the triene 5,6 -double bond for Z geometry can be rationalized in terms of an energetically favorable "syn effect" in the transition state leading to the anionic intermediate (see eq 22; it is assumed that some negative charge density develops

on carbon 3 in accord with the bonding in other pentadienyl anions ${ }^{26}$). Inasmuch as the dienes used in our methods may be prepared from olefins as already described, our triene synthesis involves a repetitive procedure in wheh both the number of carbon atoms in the chain and the number of double bonds in conjugation increase by one in each cycle, e.g., eq 23 . It is not possible to

convert conjugated trienes to conjugated tetraenes by using our procedure since trienes fail to give adducts with 2 either on direct irradiation or in the presence of zinc dichloride/tert-butyl hydroperoxide. We speculate that addition of the bromomethanesulfonyl radical to a conjugated triene gives a pentadienyl radical which is too stable ${ }^{27}$ to abstract a bromine atom from 2, thus effectively quenching the chain reaction. In fact we have observed that contamination of a sample of a conjugated diene with less than 1% of a conjugated triene is sufficient to prevent addition of 2 to the diene.

Addition of 2 to 3-methylene-1-cyclohexene followed by treatment of the adduct with triethylamine gives rise to a pair of doubly unsaturated bromomethyl sulfones 29 and 30 which can be separated by recrystallization and chromatography. The major, crystalline isomer, 29, identified by NMR methods as (Z)-3-[[(bromomethyl)sulfonyl]methylene]-1-cyclohexene gives upon treatment with potassium tert-butoxide in t - $\mathrm{BuOH} / \mathrm{THF}$ a $1: 3$ mixture of the known ${ }^{28}$ trienes 1 - and 2-vinyl-1,3-cyclohexadiene (31 and 32, respectively). The minor isomer 30 with the same base treatment gives only 32 (eq 24). These results can be

(24)
rationalized by invoking several different effects. The formation of $\mathbf{3 2}$ from $\mathbf{3 0}$ suggests that involvement of the sulfonyl group cation coordinating effect discussed above. In the absence of this effect (e.g., in 29) deprotonation could occur either at the γ position or the ϵ^{\prime}-position. The somewhat stronger inductive or field effect of the sulfonyl group at the γ-position apparently favors deprotonation at that position.

We have used the diene to triene synthesis procedure to prepare polyenes with 3-6 conjugated double bonds (Table I, entries 41-45). The most direct approach involves base treatment of bis(bromomethyl sulfones) $\mathbf{3 3}$ to afford the polyenes (eq 25). An approach to methyl-substituted polyenes involves single or double

[^9]reaction according to eq 26 and 27 of mono- or bis(bromomethyl

sulfones) of type 34 or 36, respectively, to generate skipped polyenes of type 35 or 37 which, under the basic reaction conditions, rearrange to the more stable fully conjugated terminal methyl-substituted polyenes. Another approach to the synthesis of methyl-substituted polyenes, illustrated in eq 28, involves ad-

——n
(28)
dition of α-bromoethanesulfonyl bromide to 1,4 -pentadiene followed by sequential Ramberg-Bäcklund reactions. This reaction apparently involves a vinylogous Ramberg-Bäcklund reaction through three intervening double bonds.

While these reactions involving several isolable intermediates all generated by base-induced elimination are cumbersome to represent, experimentally the procedure is simple. The initial single or double adducts of $\mathbf{1}$ or $\mathbf{2}$ with bis terminal olefins or dienes, e.g., 33, can be treated with an excess of potassium tert-butoxide leading directly to formation of the polyenes in a two-step process or two repetitive two-step processes. The polyenes are easily isolated by extraction with pentane followed by washing and concentration. While the overall yields are only moderate and mixtures of geomeric isomers result, the synthesis have the advantage of simplicity and use of readily available starting materials for the preparation of polyenes that were either previously unknown or are quite difficult to prepare. ${ }^{29,30}$

Other Reactions of α-Haloalkanesulfonyl Bromides and Their Olefin Adducts: Reaction with Alkynes

Irradiation of 2 and excess 3 -hexyne at $-25^{\circ} \mathrm{C}$ gives 1:1 adduct 38 in 90% yield. ${ }^{31}$ This, upon treatment with potassium tert-butoxide- t - BuOH /THF gives 2-ethylpent-1-en-3-yne in 46% yield by a process presumably involving formation of 3 -bromo-2.

[^10]

Figure 3. Perspective view of 2-[[(dibromomethyl)sulfonyl]methylene]adamantane showing the atom-labeling scheme. Hydrogen atoms have been omitted from the adamantyl group for clarity. Relevant bond distances and angles: $\mathrm{Br}(2)-\mathrm{C}(12), 1.912$ (7) $\AA ; \mathrm{Br}(1)-\mathrm{C}(12), 1.875$ (7) $\AA ; \mathrm{S}-\mathrm{O}(1), 1.442$ (9) $\AA ; \mathrm{S}-\mathrm{O}(2), 1.383$ (10) $\AA ; \mathrm{S}-\mathrm{C}(11), 2.213$ (12) \AA; $\mathrm{Br}-\mathrm{C} 12-\mathrm{Br}, 130.9$ (9) ${ }^{\circ}$; S-C11-C2, 149.6 (12) ${ }^{\circ}$; C3-C2-C11, 101.9 $(16)^{\circ} ; \mathrm{O}-\mathrm{S}-\mathrm{O}, 102.2(13)^{\circ}$; C-S-C, $99.0(14)^{\circ}$; for other data see supplementary material.
ethyl-1,3-pentadiene via vinylogous Ramberg-Bäcklund reaction followed by dehydrobromination (eq 29). In a similar manner

(29)

1-heptyne afforded oct-1-en-3-yne (29% overall isolated yield). Attempts to extend this procedure to propyne led to a surprising result, namely, formation of 4 -bromo-2-methyl-1,3-pentadienyl bromomethyl sulfone in addition to the expected 2 -bromo-1propenyl bromomethyl sulfone. Apparently the intermediate propyne-sulfonyl radical adduct undergoes addition to a second molecule of propyne at a rate competitive with bromine atom extraction from 2 (eq 30), a process with some precedent. ${ }^{32}$ We

were unable to prepare adducts of 2 with propargyl alcohol or chloride or with 3-phenoxy-1-propyne.

We have examined the reaction of 2 with 1,1 -disubstituted alkenes that cannot undergo subsequent vinylogous RambergBäcklund rearrangement such as 1,l-diphenylethylene and 2 methyleneadamantane. While 1,1-diphenylethylene failed to react with 2 (paralleling the lack of reactivity of this olefin in other free radical additions ${ }^{33}$), addition of 2 to 2 -methyleneadamantane followed by treatment with triethylamine gave unsaturated bromomethyl sulfone 39. It was hoped that 39 would give allene 40 upon treatment with potassium tert-butoxide (see eq 31). Instead, base treatment of 39 lead to formation of an equimolar mixture of methyl sulfone 41 and dibromomethyl sulfone 42 (ca. 13\% yield apiece) by a reaction presumably involving attack of an α-bromo α-sulfonyl carbanion on the bromine atom in 39, a process seen in sulfonyl carbanion chemistry. ${ }^{34}$ The olefinic and dibromomethyl protons in 42 are magnetically degenerate in deuteriochloroform which led to initial structural uncertainty. Thus the structural assignment was confirmed by X-ray crystallography, as summarized in Figure 3.

In systems capable of undergoing the Ramberg-Bäcklund reaction, reversible carbanion formation at the α-carbon bearing the halogen as well as at the non-halogenated position has been reported. ${ }^{2}$ However, in contrast to these other systems, the Ramberg-Bäcklund reaction of 39 involving intramolecular SN_{2} attack by an sp^{2} carbanion (eq 31 , path a) is apparently slow relative to the alternative process involving carbanion attack on halogen (eq 31, path b).

We have briefly examined the possibility of using 2 in diene synthesis via Michael-induced Ramberg-Bäcklund processes. ${ }^{35}$ Thus 1,3-butadiene was converted into 1,3-butadienyl bromomethyl sulfone (43) via sequential treatment with 2 followed by triethylamine (eq 32). Treatment of 43 with sodium isopropoxide afforded a $3: 1$ mixture of (E) - and (Z)-1-isopropoxy-2,4-pentadiene.

Conclusion

We have demonstrated in this paper that reagents $1-4$ may be easily prepared from readily available starting materials, that these reagents display high reactivity toward most olefins, dienes, silyl enol ethers, and alkynes, and that the adducts of $1-4$ with these aforementioned substrates may be transformed rapidly, and in

[^11]many cases stereo- and/or regioselectivity under mild conditions with common bases and in good yields, into products with additional unsaturation. In some of these cases we believe that use of reagents $1-4$ will represent the method of choice for both smalland large-scale synthesis.

Experimental Section

General Procedures and Materials. General procedures and selected examples of synthetic applications of compounds 1-4 are given below. For many of the final products and intermediates obtained, whose identities are readily discerned by the usual analytical techniques, physical data are provided as supplementary material.

Chloromethanesulfonyl Bromide (1). ${ }^{4}$ Chloromethanesulfonyl chloride ${ }^{36}(31.0 \mathrm{~g}, 0.208 \mathrm{~mol})$ was added to aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(39.6 \mathrm{~g}, 0.31$ mol , in 175 mL of water). The reaction mixture was stirred at room temperature until all of the chloromethanesulfonyl chloride had reacted (ca. 1 h). The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, cooled in ice, and treated dropwise with bromine ($33.0 \mathrm{~g}, 0.206 \mathrm{~mol}$). After consumption of the bromine, more bromine was added until the red color persisted. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the organic layer washed with cold $2 \% \mathrm{NaHSO}_{3}(50 \mathrm{~mL}$) and water, separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give an oil. Distillation gave 1 as a colorless liquid ($22.5 \mathrm{~g}, 56 \%$): bp $50-54^{\circ} \mathrm{C}(0.6$ mm); IR 1365 (vs), 1240 (s) 1160 (vs) $720 \mathrm{~cm}^{-1}$ (s); ${ }^{1} \mathrm{H}$ NMR $\delta 5.04$ (s)

Bromomethanesulfonyl Bromide (2). ${ }^{5}$ A 3-L three-necked roundbottomed flask equipped with a mechanical stirrer, a pressure-equalized dropping funnel, and a thermometer is charged with $100 \mathrm{~g}(0.73 \mathrm{~mol})$ of sym-trithiane ${ }^{37}$ suspended in 600 mL of water. Bromine ($1136 \mathrm{~g}, 7.1$ mol) is added with stirring while keeping the flask temperature around $40^{\circ} \mathrm{C}$ (this is an exothermic reaction and no outside heating is required; if the temperature goes above $40^{\circ} \mathrm{C}$, the flask is cooled by ice). After the addition of half of the bromine, 600 mL of water is added and the bromine addition is continued. After all of the bromine has been added the reaction mixture is stirred for 0.25 h . The mixture is transferred to a 4 -L separatory funnel, the lower organic layer is separated, and the aqueous layer is extracted with two $200-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (In the first of these extractions, the upper phase is the organic one, while in the second extraction, the organic layer is at the bottom.) The organic extracts are combined, washed with one $100-\mathrm{mL}$ portion of cold 5% $\mathrm{NaHSO} \mathrm{H}_{3}$ and with 100 mL of water, dried (MgSO_{4}), and concentrated at $25^{\circ} \mathrm{C}$ with a rotary evaporator to a light yellow oil. Distillation using a short column affords $218-249 \mathrm{~g}(42-48 \%)$ of bromomethanesulfonyl bromide as a light yellow oil: bp $60-68^{\circ} \mathrm{C}, n^{20}{ }_{\mathrm{D}} 1.5706$; IR (neat) 3040 (vs), 2960 (vs), 1362 (vs), 1205 (s), 1160 (vs), 1105 (ms), 830 (s), 680 cm^{-1} (s); ${ }^{1} \mathrm{H}$ NMR $\delta 5.05$ (s).
α-Bromoethanesulfonyl Bromide (3). ${ }^{5}$ A solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(26.7 \mathrm{~g}$ 0.212 mol) in water (50 mL) is mixed with α-bromoethanesulfony chloride ${ }^{6}(22 \mathrm{~g}, 0.106 \mathrm{~mol})$ with stirring at $0^{\circ} \mathrm{C}$ and allowed to warm to room temperature during the course of 1 h . The solution is again cooled in ice and treated dropwise with bromine ($34 \mathrm{~g}, 0.213 \mathrm{~mol}$) during 0.5 h . The product is extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, washed with cold $5 \% \mathrm{NaHSO}_{3}(2 \times 20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Distillation gave $3(18 \mathrm{~g}, 66 \%)$ as a colorless oil

[^12]bp $50-58^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$; IR (neat) $2950(\mathrm{~m}), 1360(\mathrm{~s}), 1250(\mathrm{~m}), 1165$ (s), $700(\mathrm{~s}), 640 \mathrm{~cm}^{-1}(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.20(\mathrm{q}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH})$, $2.10\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$

Iodomethanesulfonyl Bromide (4). Well-dried sodium iodomethanesulfonate ${ }^{38}(24.4 \mathrm{~g}, 0.1 \mathrm{~mol})$ was mixed with $\mathrm{PBr}_{5}(43 \mathrm{~g}, 0.1 \mathrm{~mol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 16 h , then cooled, and filtered through a small pad of silica gel which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. Evaporation of the solvent gave an or-ange-brown oil. Three recrystallizations of the oil with CS_{2} at $-72^{\circ} \mathrm{C}$ in a low-temperature recrystallization apparatus to remove POBr_{3} gave ($11.4 \mathrm{~g}, 40 \%$ yield). Distillation gave a pale violet liquid: bp $78-80^{\circ} \mathrm{C}$ (0.06 mm); ${ }^{1} \mathrm{H}$ NMR $\delta 5.25$ (s); IR 1365 (s), 1165 (s), 1130 (s), 770 (m), $725 \mathrm{~cm}^{-1}(\mathrm{~m})$.

Addition of Sulfonyl Bromides to Olefins: 1-Bromo-1-methyl-2-[(bromomethyl)sulfonyl]cyclohexane. General Procedure A. Four Pyrex test tubes ($2.5 \times 20 \mathrm{~cm}$) are charged with 1 -methylcyclohexene (5.0 g per test tube; total $20.0 \mathrm{~g}, 0.21 \mathrm{~mol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}$ per tube) and cooled in ice. An ice cold solution of 2 (13.6 g of 2 per test tube; total $54.4 \mathrm{~g}, 0.23 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ is added to each test tube with mixing at $0^{\circ} \mathrm{C}$. On accasion 2 undergoes spontaneous, exothermic addition to olefins. Thus it is desirable to mix the reagents at low temperature to avoid a possible vigorous spontaneous reaction and to maximize the yield of adduct. The test tubes are attached with the help of several rubber bands to a Pyrex immersion well equipped with a $450-\mathrm{W}$ mercury lamp. The immersion well is cooled by circulation of ice water and immersed in a cooling bath kept at $-15^{\circ} \mathrm{C}$. The reaction mixture is irradiated for 2 h . Solid $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g})$ is added to each test tube and the contents of the test tube are filtered through a small column with a glass wool plug into a $250-\mathrm{mL}$ round-bottomed flask. The solvent is removed, first on a rotary evaporator and then with a vacuum pump (1 mm), giving an oil which gradually solidifies ($68.3 \mathrm{~g}, 98 \%$). Recrystallization (100 mL of $95 \% \mathrm{EtOH}$) gives colorless crystals (54.3 g , 78%): mp 59-61 ${ }^{\circ} \mathrm{C}$; IR 2960 (s), 1450 (m), 1380 (s), 1315 (vs), 1205 (s), 1140 (vs), 1090 (vs), $745 \mathrm{~cm}^{-1}$ (s); ${ }^{1} \mathrm{H}$ NMR $\delta 4.58$ (AB q, $J=11$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.96 (dd, 1 H), 2.41-2.31 (m, 2 H), 2.16-2.08 (m, 2 H), 2.15 $(\mathrm{s}, 3 \mathrm{H}), 1.82-1.56(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 67.2,65.8,44.4,43.7,29.7$, 24.3, 23.3, 22.7.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 28.76 ; \mathrm{H}, 4.22$. Found: $\mathrm{C}, 28.82$; H, 4.26 .

Formation of 1,1-Disubstituted Olefins via Methylene-Titanium Reagent: 2-Methyloct-1-ene (17). General Procedure B. To a stirred suspension of zinc dust (28.8 g) in $\mathrm{CH}_{2} \mathrm{Br}_{2}(10.1 \mathrm{~mL}, 0.14 \mathrm{~mol})$ and dry THF (200 mL) at $-40^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}(11.5 \mathrm{~mL}, 0.1 \mathrm{~mol})$ during $40 \mathrm{~min} .{ }^{12}$ The mixture was brought to $5^{\circ} \mathrm{C}$ and was stirred at $5^{\circ} \mathrm{C}$ for 3 days to give a thick grey slurry. This slurry ($150-\mathrm{mL}$ portion) was added to 2-octanone ($6.4 \mathrm{~g}, 0.05 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$, monitoring by GC for disappearance of the starting ketone (1 h). The product was then poured onto a mixture of $\mathrm{NaHCO}_{3}(70 \mathrm{~g})$ in water (150 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The resultant mixture was filtered through a pad of Celite. The organic layer was separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL}$), and the combined organic extracts were washed with water ($4 \times 25 \mathrm{~mL}$), dried, filtered, and concentrated in vacuo, giving a colorless liquid. Flash distillation gave 2-methyloct-1-ene ($3.5 \mathrm{~g}, 56 \%$), ${ }^{1} \mathrm{H}$ NMR $\delta 4.77-4.49$ (m, 2 H), 2.23-0.62 (m, 16 H).

Formation of 1-Alkenyl Bromomethyl Sulfones from Olefin-2 Adducts: (E,Z)-11-Hydroxy-1-undecenyl Bromomethyl Sulfone. General Procedure C. 2-Bromo-11-hydroxyundecyl bromomethyl sulfone ($16.3 \mathrm{~g}, 0.04$ $\mathrm{mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$, cooled in ice, and treated dropwise with stirring with a solution of $\mathrm{Et}_{3} \mathrm{~N}(4.85 \mathrm{~g}, 0.048 \mathrm{~mol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL). The reaction mixture was stirred for 0.25 h and washed with dilute $\mathrm{HCl}(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$, and the organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo, giving a solid ($12.9 \mathrm{~g}, 99 \%$). Recrystallization ($95: 5 \mathrm{CCl}_{4} / \mathrm{CHCl}_{3}$) gave colorless crystals of the E isomer: mp $60^{\circ} \mathrm{C}$; IR $3375(\mathrm{OH}, \mathrm{br}), 1630$ (m), $1325(\mathrm{~m}), 1130(\mathrm{vs}), 1060 \mathrm{~cm}^{-1}(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.13$ and 6.89 (1 $\left.\mathrm{H}, \mathrm{td}, J_{\mathrm{d}}=15, J_{\mathrm{t}}=6 \mathrm{~Hz}\right), 6.21(1 \mathrm{H}, J=15 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{s}), 3.57$ (2 H, t), $2.30(2 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{s}), 1.35(14 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR δ 153.9, 124.8, 62.8, 43.4, 32.7, 31.8, 29.3 (3 C), 29.1, 28.9, 25.7.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{BrO}_{3} \mathrm{~S}$: C, 44.04; $\mathrm{H}, 7.08$. Found: $\mathrm{C}, 43.95$; H, 7.09.
(E, Z)-1-Octenyl Bromomethyl Sulfone (12E,Z). As in procedure C, a $10: 1$ mixture of $12 \mathrm{E} / \mathrm{Z}$ was obtained in 97% yield. Recrystallization (pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 95: 5$) gave colorless crysals of 12E (51%): mp 34-35 ${ }^{\circ} \mathrm{C}$; IR 1625 (m), 1325 (vs), $1140(\mathrm{vs}), 855 \mathrm{~cm}^{-1}$ (s); ${ }^{1} \mathrm{H}$ NMR $\delta 7.10$ and $6.86\left(\mathrm{td}, J_{\mathrm{d}}=15,1 \mathrm{H}\right), 6.24(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 2.33$ (m, 2 H), 1.34 (br s, 8 H), 0.89 (t, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 153.8,125.0,43.5$, 31.9, 31.5, 28.7, 27.5, 22.5, 14.0.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{1}, \mathrm{BrO}_{2} \mathrm{~S}: \mathrm{C}, 40.15 ; \mathrm{H}, 6.37$. Found: $\mathrm{C}, 40.32$; H, 6.36.

Preparatory HPLC (hexane/THF 92:3) of the mother liquor gave $\mathbf{1 2 Z}$ as an oil (5\%): IR $1620(\mathrm{~m}), 1320(\mathrm{vs}), 1140(\mathrm{vs}), 880 \mathrm{~cm}^{-1}(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.65$ and $6.53\left(\mathrm{td}, J_{\mathrm{d}}=11 \mathrm{~Hz}, 1 \mathrm{H}\right) .6 .25(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H})$. 4.36 (s. 2 H$), 2.69(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 0.89(\mathrm{t}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 152.9,124.7,44.0,31.5,28.8$ (2 C), 28.3, 22.5, 14.0
(E, Z)-2-Methyl-1-octeny1 Bromomethyl Sulfone (18a, a'). As in procedure A addition of 2 to 2-methyloct-1-ene gave 2-bromo-2methyloctyl bromomethyl sulfone in 95% yield as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 4.42$ ($\mathrm{s}, 2 \mathrm{H}$), 3.88 (s, 2 H), $2.09(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.10(\mathrm{~m}, 10 \mathrm{H}), 1.03-0.65$ ($\mathrm{m}, 3 \mathrm{H}$). Following procedure C , a $2.7: 1$ mixture of the title compounds was obtained as an oil (92%). HPLC separation of a $0.18-\mathrm{g}$ sample of the mixture of isomers (99.5% hexane, 0.5% isopropyl alcohol) gave 0.10 of $18 \mathrm{a}(E),>98 \%$ pure by GC analysis, and 0.03 g of $18 a^{\prime}(Z)$ as colorless oils (GC $t_{\mathrm{R}} 9.62$ and 8.69 min , respectively, at $195^{\circ} \mathrm{C}$). The E isomer had ${ }^{1} \mathrm{H}$ NMR $\delta 6.05$ (q, 1 H), 4.36 (s, 2 H), 2.21 (d, $3 \mathrm{H}, J=$ $2 \mathrm{~Hz}, \mathrm{CH}_{3}$ syn to SO_{2}), 2.40-1.92 ($2.16 \mathrm{av}, \mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ anti to SO_{2}), $1.68-1.03(\mathrm{~m}, 8 \mathrm{H}), 1.03-0.69(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 163.9,120.0,44.3$, $40.9,31.5,28.7,27.1,22.5,18.3,14.0$. The Z isomer had ${ }^{1} \mathrm{H}$ NMR δ $6.05(\mathrm{q}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 2.81-2.44$ (2.63 average, $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ syn to SO_{2}), $2.01\left(\mathrm{~d}, 3 \mathrm{H}, J=2 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ anti to $\left.\mathrm{SO}_{2}\right), 1.58-1.06(\mathrm{~m}, 8 \mathrm{H})$, $1.06-0.69(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 164.1,120.2,44.3,33.0,31.6,29.3,28.4$, 25.0, 22.5, 14.0.
($E, Z)-1-[[($ Bromomethyl $)$ sulfonyl]methylene $]-3$-methylcyclohexane (15). As in procedure A, addition of 2 to 3 -methyl-1-methylenecyclohexane gave 1-bromo-1-[[(bromomethyl)sulfonyl]methyl]-3-methylcyclohexane (95\%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 4.56$ (s, 2 H), 3.98 (s, 2 H), 2.54-1.37 (m, 9 H), $0.96(\mathrm{~d}, 3 \mathrm{H})$. Procedure C gave a mixture of the title compounds (93\%) as an oil. Fractional crystallization $\left(\mathrm{CCl}_{4}\right)$ gave the E isomer as colorless needles: mp $79-80{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.04$ (br $\mathrm{s}, 1 \mathrm{H}), 4.36$ (s, 2 H), $3.64-3.19$ (m, 1 H), 2.44-1.27 (m, 8 H), 0.98 (d, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.7,117.9,45.9,44.5,35.0,33.9,29.3,26.6,21.9$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{BrSO}_{2}$: C. $40.46 ; \mathrm{H}, 5.66$. Found: $\mathrm{C}, 40.59$; H, 5.50.

Preparatory HPLC of the mixture (99% hexane, $1 \% i$ - PrOH) gave the Z isomer as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.58-3.21$ $(\mathrm{m}, 1 \mathrm{H}), 2.52-1.32(\mathrm{~m}, 8 \mathrm{H}), 1.01(\mathrm{~d}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.7,117.9$, $44.6,37.5,34.5,34.0,27.2,22.1$

Formation of Dienes Directly from Olefin-2 Adducts: 1,2-Dimethylenecyclohexane. General Procedure D. An oven-dried 1-L three-necked round-bottomed flask equipped with a mechanical stirrer and a pressure-equalized dropping funnel is charged with $\mathrm{KO}-t-\mathrm{Bu}$ (59.5 $\mathrm{g}, 0.53 \mathrm{~mol}$) in $t-\mathrm{BuOH}-\mathrm{THF}(9: 1 ; 400 \mathrm{~mL}$ total) and cooled in ice in an argon atmosphere. A solution of 1-bromo-1-methyl-2-[(bromomethyl)sulfonyl]cyclohexane ($54.0 \mathrm{~g}, 0.16 \mathrm{~mol}$) in $t-\mathrm{BuOH}-\mathrm{THF}(9: 1$; 100 mL) is added dropwise during 1 h . The reaction mixture is stirred at $25^{\circ} \mathrm{C}$ for 0.5 h and then is poured into a $2-\mathrm{L}$ separatory funnel containing water (500 mL). This solution is extracted with pentane (2 $\times 150 \mathrm{~mL}$); the combined pentane extracts are washed with water ($8 \times$ 500 mL ; the first four washings are done with gentle agitation to avoid emulsion formation), dried (MgSO_{4}), and filtered. The pentane is removed by distillation at atmospheric pressure using an efficient Vigreux column, and the residue is distilled under reduced pressure to give 11.4 $\mathrm{g}(65 \%)$ of the title compound as a colorless liquid: bp $69-70^{\circ} \mathrm{C}$ [90 mm ; lit. $\left.{ }^{39} 60-61^{\circ} \mathrm{C},(90 \mathrm{~mm})\right]$ shown by GC analysis to be 93% pure; $n^{20}{ }_{\mathrm{D}} 1.4722$; IR 3090 (s), $2940(\mathrm{~s}), 2870(\mathrm{~s}), 1635(\mathrm{~s}), 1440(\mathrm{~s}), 895 \mathrm{~cm}^{-1}$ (vs); ${ }^{1} \mathrm{H}$ NMR $\delta 4.93-4.92$ (m, 2 H), 4.65-4.64 (m, 2 H), 2.27-2.24 (m, $4 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 149.7,107.8,35.4,36.9$.

5-Methyl-1-vinyl-1-cyclohexene (16b). Reaction of pure (E)-1-[[(bromomethyl)sulfonyl]methylene]-3-methylcyclohexane with KO-t-Bu as in procedure D gave, after distillation, 16b (78\%): IR 1650, 1620, 1460. $1000,900 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.62-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{t}, 1 \mathrm{H})$, $5.25-4.70(\mathrm{~m}, 2 \mathrm{H}), 2.47-1.13(\mathrm{~m}, 7 \mathrm{H}), 1.01(\mathrm{~d}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 140.1, 135.8, 129.3, 109.6, 32.4, 30.8, 28.4, 25.8, 22.0.

3-Methyl-1-vinyl-1-cyclohexene (16b'). A solution of LiO-t-Bu (0.0023 mol) in t - BuOH was prepared by adding n-butyllithium (1.5 mL , 1.55 M) in THF to $t-\mathrm{BuOH}(3 \mathrm{~mL})$. This solution was added dropwise to a refluxing solution of $(Z)-1-[[($ bromomethyl $)$ sulfonyl $]$ methylene $]-3-$ methylcyclohexane ($0.17 \mathrm{~g}, 0.64 \mathrm{mmol}$) in $4: 1 \mathrm{THF}-t-\mathrm{BuOH}(2.5 \mathrm{~mL})$. The mixture was maintained at reflux for 1 h . and then diluted with water $(10 \mathrm{~mL})$ and extracted with pentane $(2 \times 10 \mathrm{~mL})$. The combined pentane extracts were washed with water $(6 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give $\mathbf{1 6 b}$ ' $(0.06 \mathrm{~g}, \mathbf{7 7 \%})$: 'H NMR δ 6.59-5.97 (m, 1 H), 5.59 (d, 1 H), 5.18-4.63 (m, 2 H), 2.40-1.03 (m, $7 \mathrm{H}), 0.93$ (d, 3 H); ${ }^{13} \mathrm{C}$ NMR δ 140.3, 136.0, 135.3, 110.1, 31.3, 30.9 . 23.8, 21.5, 21.4.
(38) Lauer, W. M.; Langkammerer, C. M. J. Am. Chem. Soc. 1935, 57, 2361-2362.
(39) Bailey, W. J.; Golden, H. R. J. Am. Chem. Soc. 1953, 75, 4780-4782. Blomquist, A. T.; Longone, D. T. J. Am. Chem. Soc. 1957, 79, 3916-3919

5-Methyl-1-vinyl-1-cyclohexene (16b) and 3-Methyl-1-vinyl-1-cyclohexene ($\mathbf{1 6} \mathbf{b}$ '). Treatment of "a $1: 1$ mixture of (E, Z)-1-[[(bromo-methyl)sulfonyl]methylene]-3-methylcyclohexane with KO-t-Bu as in procedure D gave after flash distillation a mixture of $\mathbf{1 6 b}$ and $16 \mathrm{~b}^{\prime}$ (1.9:1; 69%) as determined by capillary $\mathrm{GC}\left(t_{\mathrm{R}}\right.$ at $70^{\circ} \mathrm{C} 8.03$ and 7.90 min , respectively) as well as NMR methods.

Formation of Dienes from 1-Alkenyl Bromomethyl Sulfones: (E,-$Z)$-1,3-Nonadiene. ${ }^{11 a}$ General Procedure E. (E, Z)-1-Octenyl bromomethyl sulfone ($12 \mathrm{E}, \mathrm{Z} ; 5.4 \mathrm{~g}, 0.02 \mathrm{~mol}$) was dissolved in THF- $t-\mathrm{BuOH}$ ($1: 9,20 \mathrm{~mL}$) and added dropwise to an ice-cold solution of $\mathrm{KO}-t-\mathrm{Bu}$ (6.75 $\mathrm{g}, 0.01 \mathrm{~mol})$ in THF- $t-\mathrm{BuOH}(1: 9,100 \mathrm{~mL})$. The reaction mixture was stirred in ice for 1 h and at $25^{\circ} \mathrm{C}$ for 0.5 h , then diluted with water (200 mL), and extracted with pentane ($2 \times 75 \mathrm{~mL}$). The ombined organic layer was washed with water ($4 \times 150 \mathrm{~mL}$), separated, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give an oil. Distillation gave the title compound ${ }^{11 \mathrm{a}}(1.79 \mathrm{~g}, 72 \% ; 2: 1 \mathrm{Z} / E)$: IR $1642(\mathrm{~m}), 1602(\mathrm{~m}), 1465(\mathrm{~s}), 1002$ (vs), $902 \mathrm{~cm}^{-1}$ (vs); ${ }^{1} \mathrm{H}$ NMR $\delta 6.94-4.62(\mathrm{~m}, 5 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.30$ (br m, 6 H), $0.84(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta(E) 137.5,135.5,131.1,114.5$, 32.6, 31.6, 29.0, 22.7, 14.0, (Z) 133.0, 132.5, 129.3, 116.6, 31.6, 29.4, $27.8,22.7,14.0 ;$ MS, $m / e 124\left(\mathrm{M}^{+}, 65\right), 95$ (20), 81 (34), 67 (66), 54 (100).

3-Methylenenon-1-ene (19). ${ }^{40}$ As in procedure E (except treated with base at $-23^{\circ} \mathrm{C}$; THF: t - BuOH ratio was $1: 5$), (E, Z)-2-methyl-1-octenyl bromomethyl sulfone was converted into the title compound ($82 \% ; 9 \%$ of 3-methyl-1,3-nonadiene).

6-Methylene-4-decene. As in procedure A addition of 2 (50% excess) to 5-decene gave 5-bromo-6-[(bromomethyl)sulfonyl]decane as a thick oil (95%), ${ }^{1} \mathrm{H}$ NMR $\delta 4.85-4.3$ (m, 1 H), $4.52(\mathrm{~s}, 2 \mathrm{H}), 3.9(\mathrm{~m}, 1 \mathrm{H})$, 2.41-0.69 (br m, 18 H). Procedure C gave a $6: 1$ mixture of (E) - and (Z)-5-[(bromomethyl)sulfonyl]-5-decene (100%): ${ }^{1} \mathrm{H}$ NMR $\delta 6.79$ (t, Z isomer) and $6.25(\mathrm{t}, E$ isomer, total area for both 1 H$), 4.45$ and 4.3 ($2 \mathrm{~s}, 2 \mathrm{H}$ total), $2.9-1.87$ (m, 4 H), 1.46 (br s, 8 H), 0.95 (t. 6 H). Application of procedure E gave the title compound as a colorless liquid (75\%).

1-Vinylcycloheptene. Methylenecycloheptane was treated with 1 equiv of 2 by procedure A. Application of procedure C to the resulting thick oil gave [[(bromomethyl)sulfonyl]methylene]cycloheptane (96\%). Procedure E gave after distillation the title compound (85%) as a colorless liquid.

3-Methylenecyclooctene. ${ }^{41}$ Cyclooctene was treated with an equiv of 2 by procedure A. Application of procedure D to the product (80%) gave after distillation the title compound as a colorless oil (57%).
($\boldsymbol{E}, \boldsymbol{Z}$)-1,3-Butadienyl Phenyl Ether. ${ }^{42}$ Application of procedure C to 2-bromo-3-phenoxypropyl bromomethyl sulfone gave (E, Z)-3-phen-oxy-1-propenyl bromomethyl sulfone (97%); recrystallization $\left(\mathrm{CCl}_{4}\right)$ gave colorless crystals of the E isomer, $\mathrm{mp} 76-77^{\circ} \mathrm{C}$. Application of procedure E to the above sulfone gave the title compound ${ }^{42}(58 \% ; 1: 9 E / Z)$.

Preparation of Conjugated Trienes: $(E)-1,3,5-$ Hexatriene, ${ }^{23}$ As in procedure A $2(14.3 \mathrm{~g}, 0.06 \mathrm{~mol}$) was added to 1,3 -pentadiene (4.08 g , 0.06 mol) to afford 4 -bromo-2-pentenyl bromomethyl sulfone (17.9 g , 98%). Procedure C gave (E, E)-1,3-pentadienyl bromomethyl sulfone ($11.5 \mathrm{~g}, 88 \%$) as a colorless solid: $\mathrm{mp} 65-67^{\circ} \mathrm{C}$ (from CCl_{4}); IR 1640 (s). 1585 (m), 1315 (vs), $1135(\mathrm{vs}), 820 \mathrm{~cm}^{-1}(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.44-6.89$ (m, 1 H$), 6.5-5.94(\mathrm{~m}, 3 \mathrm{H}), 4.37(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~d}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $148.3,144.7,127.3,121.3,43.8,18.9$. The latter compound ($4.5 \mathrm{~g}, 0.02$ mol) in $t-\mathrm{BuOH}(25 \mathrm{~mL})$ was added tp KO-t-Bu ($5.0 \mathrm{~g}, 0.045 \mathrm{mmol}$) in $t-\mathrm{BuOH}(100 \mathrm{~mL})$ and the mixture was stirred for 0.5 h . Water (100 mL) was added and the reaction mixture was extracted with dodecane $(2 \times 50 \mathrm{~mL})$. The combined dodecane layer was washed ($4 \times 200 \mathrm{~mL}$ of water) and dried (MgSO_{4}). Flash distillation [$50^{\circ} \mathrm{C}(1 \mathrm{~mm})$] gave (E)-1,3,5-hexatriene ($0.40 \mathrm{~g}, 25 \% ;<2 \%$ of Z isomer): IR $1430(\mathrm{~m})$, $1010(\mathrm{~s}), 900 \mathrm{~cm}^{-1}(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.77-5.89(\mathrm{~m}, 4 \mathrm{H}), 5.48-4.81(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 136.9, 133.7, 117.8. ${ }^{23}$
($\boldsymbol{E}, \boldsymbol{Z}$)- and ($\boldsymbol{E}, \boldsymbol{E}$)-1,3,5-Undecatriene. ${ }^{24}$ 1,3-decadiene was treated with 1 equiv of 2 as in procedure A to give a $1: 1$ adduct (100%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.52-5.45(\mathrm{~m}, 2 \mathrm{H}), 4.87-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.00(\mathrm{~d}, 2 \mathrm{H})$, 2.33-1.68(m, 2 H), $1.68-1.06(\mathrm{~m}, 8 \mathrm{H}), 1.06-0.58(\mathrm{~m}, 3 \mathrm{H})$. Procedure $\mathrm{C}\left(50 \%\right.$ excess of $\mathrm{Et}_{3} \mathrm{~N}$) gave 1,3-decadienyl bromomethyl sulfone (97%). Recrystallization (pentane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave (E, E)-1,3-decadienyl bromomethyl sulfone, $\mathrm{mp} 54-55^{\circ} \mathrm{C}$.

This latter compound ($4.43 \mathrm{~g}, 15 \mathrm{mmol}$) in THF (143 mL) $-t-\mathrm{BuOH}$ (286 mL) and a solution of $\mathrm{KO}-\mathrm{t}-\mathrm{Bu}(4.2 \mathrm{~g}, 37 \mathrm{mmol}$) in THF (143 mL) and $t-\mathrm{BuOH}(286 \mathrm{~mL})$ were separately added simultaneously via syringe
(40) Ueno, Y.; Sano, H.; Aoki, S.; Okawara, M. Tetrahedron Letr. 1981, 22, 2675-2678.
(41) Dauben, W. G.; Poulter, C. D.; Suter, C. J. Am. Chem. Soc. 1970, 92, 7408-7412. Short, M. R.; J. Org. Chem. 1972, 37, 2201-2202. (42) Everlardus, R. H.; Peterse, A.; Vermeer, P.; Brandsma, L.; Arens, J. F. Recl. Trav. Chim. Pays-Bas 1974, 93, 90-91.
drive during 24 h to t - $\mathrm{BuOH}(715 \mathrm{~mL})$ in a three-necked flask in an argon atmosphere and in the dark. The resulting solution was diluted with water (1200 mL) and extracted with pentane ($2 \times 150 \mathrm{~mL}$), and the pentane extract was washed with water ($12 \times 100 \mathrm{~mL}$), dried (Mg SO_{4}), and concentrated to give a red liquid which upon flash distillation gave a $1,1: 1$ mixture of (E, Z) - and ($E, E)-1,3,5$-undecatriene ${ }^{24}(0.55 \mathrm{~g}$, 24%) as a pale yellow liquid: GC $t_{\mathrm{R}} 10.65$ and $11.16^{*} \mathrm{~min}$ (oven 100 ${ }^{\circ} \mathrm{C}$), respectively; IR (thin film) $2950(\mathrm{~s}), 1480(\mathrm{~m}), 1010(\mathrm{~s}), 900 \mathrm{~cm}^{-1}$ (m); UV (hexane) $\lambda_{\text {max }} 253,268,273 \mathrm{~nm}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.96-4.77(\mathrm{~m}, 7$ H). $2.50-1.82(\mathrm{q}, 2 \mathrm{H}), 1.58-1.10(\mathrm{~m}, 6 \mathrm{H}), 1.06-0.69(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \delta$ NMR 137.3*, 136.1*, 133.6*, 132.9, 131.0*, 130.2*, 128.7, 128.3, 116.7, 116.1*, 32.8*, 31.5*, 29.4, 29.0*, 27.9, 22.6*, 14.0*. An authentic sample of (E, E)-1,3,5-undecatriene was prepared to confirm some of the above data (indicated by asterisk). The stereoselectivity could be increased to $1.6: 1 E, Z / E, E$ (at the expense of the yield) by running the reaction at $-24^{\circ} \mathrm{C}$. Neither the yield nor stereoselectivity of the undecatrienes was changed by using 1,3 -decadientyl iodomethyl sulfone, prepared as above by using iodomethanesulfonyl bromide.
$\mathbf{1 , 3 , 5}$-Heptatriene. Three equivalents of 1,5 -hexadiene was treated with 1 equiv of 2 as in procedure A to give 2 -bromo- 5 -hexenyl bromomethyl sulfone (86%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.21-5.49(\mathrm{~m}, 1 \mathrm{H})$, $5.39-4.87$ (m, 2 H), 4.73-4.18 (m, 3 H), 4.08-3.53 (dd, 2 H), 2.64-1.82 ($\mathrm{m}, 4 \mathrm{H}$). Procedure $\mathrm{C}\left(50 \%\right.$ excess of $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$ gave 1,5 -hexadienyl bromomethyl sulfone (97%), bp $110-111^{\circ} \mathrm{C}(0.02 \mathrm{~mm})$. Treatment of the latter compound with $\mathrm{KO}-i-\mathrm{Bu}$ as above gave after flash distillation a mixture of isomeric $1,3,5$-heptatrienes (24%) as a colorless liquid: UV (hexane) $\lambda_{\max } 248,258,269$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.24-5.3(\mathrm{~m}, 5 \mathrm{H}), 5.30-4.80$ $(\mathrm{m}, 2 \mathrm{H}), 1.72(\mathrm{~d}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 137.2,133.5,132.3,131.0,130.8$, $130.2,129.2,128.3,127.6,127.0,124.4,117.1,116.8,116.1,18.7,18.3$. If the reaction with $\mathrm{KO}-t-\mathrm{Bu}$ was done at $-23^{\circ} \mathrm{C}$, a $3: 1$ mixture of $1,3,5$-heptatrienes and $1,3,6$-heptatrienes was found; at $25^{\circ} \mathrm{C} \mathrm{KO}-t-\mathrm{Bu}$ converted the 1,3,6-heptatrienes into $1,3,5$-heptatrienes.

1-Vinyl-1,3-cyclohexadiene and 2-Vinyl-1,3-cyclohexadiene. ${ }^{28}$ 3Methylenecyclohexene was treated with 1 equiv of 2 as in procedure A to give a $1: 1$ adduct (96%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.23(\mathrm{~d}, 1 \mathrm{H}), 5.08-4.75$ (m, 1 H), 4.46 (br s, 2 H), 3.91 (d, 2 H), 2.62-1.59 (m, 6 H). Procedure $\mathrm{C}\left(25 \%\right.$ excess of $\mathrm{Et}_{3} \mathrm{~N}$) gave a $5: 1$ mixture of (Z) - and (E)-3-[[(bromomethyl)sulfonyl]methylene]cyclohexene (92%) as an oil: GC $t_{\mathrm{R}} 9.18$ and 8.67 , respectively ($225{ }^{\circ} \mathrm{C}$). Crystallization $\left(\mathrm{CCl}_{4}\right)$ gave the Z isomer as colorless crystals: $\mathrm{mp} 47-47.5^{\circ} \mathrm{C}$; IR (KBr) $2950(\mathrm{~m}), 1620$ (s), 1580 (s), $1310(\mathrm{~s}), 1210(\mathrm{~m}), 1140(\mathrm{~s}), 1100(\mathrm{~s}), 890(\mathrm{~m}), 850 \mathrm{~cm}^{-1}$ (m); ${ }^{1} \mathrm{H}$ NMR $\delta 7.24(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.21(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 2.74-2.09(\mathrm{~m}, 4 \mathrm{H}), 2.09-1.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 155.2,142.2,122.3,116.2,44.8,32.4,25.9,22.0$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{SO}_{2} \mathrm{Br}: \mathrm{C}, 38.26 ; \mathrm{H}, 4.42$. Found: $\mathrm{C}, 37.63$; H, 4.35.

Preparatory HPLC (85% hexane, 15% THF) of the crude mixture gave the E isomer. Procedure E on the E, Z mixture gave after flash distillation a 3:1 mixture of 2-vinyl-1,3-cyclohexadiene and 1-vinyl-1,3cyclohexadiene (53%), GC $t_{\mathrm{R}} 9.87$ and $10.06\left(50{ }^{\circ} \mathrm{C}\right)$, respectively, identified by comparison with a known mixture ${ }^{28}$ of the two isomers. GC experiments established that (E)-3-[[(bromomethyl)sulfonyl]methylene]cyclohexene gave only 2-vinyl-1,3-cyclohexatriene upon treatment with KO-t-Bu while the Z isomer gave a mixture of the title trienes.

1,3,5,7,9,11-Dodecahexaene. ${ }^{29 a}$ The adduct of 1,3,7,9-decatetraene $(0.62 \mathrm{~g}, 4.6 \mathrm{mmol})$ and 2 equiv of $2(2.22 \mathrm{~g}, 9.3 \mathrm{mmol})$ was prepared in nearly quantitative yield by procedure A as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.40-5.49$ (m, 4 H), 4.78-4.24 (m, 6 H$), 4.01$ (d, 4 H), 2.38-1.80 (m, 4 H). Treatment of this adduct (1,10-bis[(bromomethyl)sulfonyl]-4,7-di-bromo-2,8-decadiene; $2.8 \mathrm{~g}, 4.6 \mathrm{mmol}$) with $\mathrm{Et}_{3} \mathrm{~N}(16 \mathrm{mmol}, 1.64 \mathrm{~g})$ as in procedure C gave 1,10-bis[(bromomethyl)sulfonyl]-1,3,7,9-decatetraene ($1.83 \mathrm{~g}, 92 \%$; mixture of isomers): ${ }^{1} \mathrm{H}$ NMR $\delta 7.72-6.93(\mathrm{~m}, 2 \mathrm{H})$, 6.86-6.11 (m, 6 H), $4.39(\mathrm{~s}, 4 \mathrm{H}), 2.74-2.13(\mathrm{~m}, 4 \mathrm{H})$. This latter product ($3.2 \mathrm{~g}, 7.1 \mathrm{mmol}$) in THF (143 mL) $-t-\mathrm{BuOH}(50 \mathrm{~mL})$ and a solution of KO-t-Bu ($6.4 \mathrm{~g}, 57 \mathrm{mmol}$) in THF (143 mL) and $t-\mathrm{BuOH}$ (50 mL) were separately added simultaneously via syringe drive during 7 h to $t-\mathrm{BuOH}(1100 \mathrm{~mL})$ in a three-necked flask in an argon atmosphere and in the dark. The resulting dark red solution was diluted with water $(1200 \mathrm{~mL})$ and extracted with pentane $(4 \times 100 \mathrm{~mL})$, and the pentane extract was washed with water ($15 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered to give a solution of a mixture of isomers of 1,3,5,7,9,11-dodecahexaene with a UV spectrum identical with that reported ${ }^{29 a}$ ($\lambda_{\max } 308$, $324,341,362 \mathrm{~nm}$) in 25% yield (calculated on the basis of the reported ${ }^{29}$ a extinction coefficient (138000) for the $362-\mathrm{nm}$ maximum): IR (in $\left.\mathrm{CDCl}_{3}\right) 3050(\mathrm{~m}), 1610(\mathrm{~m}), 1270(\mathrm{~m}), 1090(\mathrm{~m}), 1010(\mathrm{~s}), 860 \mathrm{~cm}^{-1}$ (m); ${ }^{1} \mathrm{H}$ NMR $\delta 7.00-5.69(\mathrm{~m}, 10 \mathrm{H}), 5.45-4.80(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 137.1,135.1,134.5,134.2,133.8,133.4,130.2,130.1,129.6,128.8$, $128.5,128.2,124.8,118.2,118.0,117.7,117.5 ; \mathrm{MS}, m / e 158\left(\mathrm{M}^{+}, 17 \%\right)$, $130,129,117,115,91,86,84,80,79,78$ (100%), 77.

1,3,5,7-Octatetraene. ${ }^{29 \mathrm{c}}$ A mixture of 1,5 -hexadiene ($1.64 \mathrm{~g}, 20 \mathrm{mmol}$) and $2(14.28 \mathrm{~g}, 60 \mathrm{mmol})$ in acetone (6 mL) was irradiated at $-20^{\circ} \mathrm{C}$ for 1 h . Acetone was then evaporated and the resulting semisolid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Removal of traces of solvent gave a colorless solid insoluble in most solvents ($7.2 \mathrm{~g}, 65 \%$), ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 4.87(\mathrm{~s}$, 4 H), 4.77-4.39 (m, 2 H), 4.01 (dd, 4 H), 2.54-2.16 (m, 4 H). With a solid addition funnel, this latter compound (1,6-bis[(bromomethyl)-sulfonyl]-2,5-dibromohexane; $4.3 \mathrm{~g}, 7.7 \mathrm{mmol}$) was added slowly under argon to a solution of $\mathrm{KO}-t-\mathrm{Bu}(9.1 \mathrm{~g}, 80 \mathrm{mmol})$ in $t-\mathrm{BuOH}(170 \mathrm{~mL})$ and THF (50 mL). The mixture was then stirred at $45^{\circ} \mathrm{C}$ for 2 h , diluted with water, and extracted with pentane ($3 \times 50 \mathrm{~mL}$) and the pentane extract washed with water ($7 \times 25 \mathrm{~mL}$), dried, filtered, and concentrated in vacuo to give a semisolid. Flash distillation gave a $4: 1$ mixture (by GC; $>90 \%$ pure) of 1,3,5,7-octatetraene and 1,3,5-cyclooctatriene as a colorless solid ($0.15 \mathrm{~g}, 18 \%$): UV $\lambda_{\text {max }} 302,287,276,265$ nm ; IR $2975(\mathrm{~s}), 1830(\mathrm{~m}), 1630(\mathrm{~m}), 1430(\mathrm{~m}), 1410(\mathrm{~m}), 1250(\mathrm{~m})$ 1020 (s), $860 \mathrm{~cm}^{-1}$ (s); ${ }^{1} \mathrm{H}$ NMR $87.13-5.56(\mathrm{~m}, 6 \mathrm{H}), 5.45-4.80(\mathrm{~m}$ 4 H); ${ }^{13} \mathrm{C}$ NMR $\delta 137.0,133.9,133.0,117.5$ (major peaks). A catalytic a mount of iodine was added to a sample of the mixture of $1,3,5,7-\mathrm{oc}$ tatetraene and $1,3,5$-cyclooctatriene in CDCl_{3}, and the solution was exposed to a sunlamp for 1 h . The product was then washed with sodium thiosulfate solution and water, dried, and filtered to give a solution of 1,3,5-cyclooctatriene in deuteriochloroform ($>90 \%$ pure by GC): ${ }^{1} \mathrm{H}$ NMR $\delta 6.09-5.57(\mathrm{~m}, 6 \mathrm{H}), 2.54-2.23$ ($\mathrm{br} \mathrm{s}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 135.5$, 126.7, 126.0, 28.0; UV $\lambda_{\text {max }} 263 \mathrm{~nm}$.

1,3,5,7-Nonatetraene. Method 1. Following procedure A, reaction of 2 (2.1 equiv) with 1,6 -heptadiene gave a bis-adduct, 1,7 -bis[(bromo-methyl)sulfonyl]-2,6-dibromoheptane (96%) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 4.53$ (dd, 4 H), 4.42-4.12 (m, 2 H), 3.81 (dd, 4 H), 2.30-1.65 (m, 6 H). The latter compound was treated with KO-t-Bu (10 equiv) in t-BuOH-THF as above (15 h addition) to give after flash distillation 1,3,5,7-nonatetraene as a mixture of isomers (24\%): IR $3040(\mathrm{~m}), 1620(\mathrm{~m}), 1440(\mathrm{~m})$, $1010(\mathrm{~m}), 990(\mathrm{~s}), 910(\mathrm{~s}), 810(\mathrm{w}), 660 \mathrm{~cm}^{-1}(\mathrm{~m})$; UV $\lambda_{\max } 306,292$, 280, $270 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.01-5.57$ (m, 7 H), 5.40-4.89 (m, 2 H), 1.77 (d, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 141.2,137.2,134.4,133.8,133.6,133.1,132.3$, $131.9,130.9 ., 130.3,129.6,129.2,127.8,127.4,125.5,118.0,117.7$, 116.6, 18.7, 18.4.

1,3,5,7-Nonatetraene. Method 2. Addition of 2.2 equiv of α-bromoethanesulfonyl bromide (3) to 1,4-pentadiene as in procedure A gave 1,5-bis[(α-bromoethyl)sulfonyl]-2,4-dibromopentane as a viscous oil (91\%): ${ }^{1} \mathrm{H}$ NMR 5.6 (q, 2 H), 4.8 (m, 2 H), 3.7 (m, 2 H), 2.7 (t, 2 H), $2.3(\mathrm{~d}, 4 \mathrm{H}), 2.0(\mathrm{~d}, 6 \mathrm{H})$. Procedure C on the latter product with 3.5 equiv of $\mathrm{Et}_{3} \mathrm{~N}$ gave 1,5-bis[(α-bromoethyl)sulfonyl]-1,4-pentadiene (66%) as a mixture of isomers. Reaction of the latter compound with 5 equiv of KO-t-Bu as above gave a pentane solution with a UV spectrum identical with that described in method 1 above. The yield estimated by UV analysis was 14%.

1,3,5,7,9-Decapentaene. ${ }^{29 \mathrm{a}}$ 1,3,7-Octatriene was prepared in 81% distilled yield via addition of a 3 -fold excess of allylmagnesium bromide to 2,4 -pentadienyl bromide ${ }^{27}$ in ether in the presence of $3 \mathrm{~mol} \%$ cuprous bromide. The $1: 2$ adduct of $1,3,7$-octatriene ($1.08 \mathrm{~g}, 10 \mathrm{mmol}$) and 2 $(4.76 \mathrm{~g}, 20 \mathrm{mmol})$ was prepared in nearly quantitative yield by procedure A; ${ }^{1} \mathrm{H}$ NMR $\delta 6.27-5.65$ (m, 2 H), 4.43 (d, 2 H), 4.35 ($\mathrm{s}, 4 \mathrm{H}$), 4.01 (d, $2 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.54(\mathrm{~m}, 4 \mathrm{H})$. Procedure A on the latter product ($1.1 \mathrm{~g} ; 2.6$ equiv of $\mathrm{Et}_{3} \mathrm{~N}$) gave 1,10 -bis[(bromomethyl)-sulfonyl]-1,3,7-octatriene ($0.66 \mathrm{~g}, 83 \%$) as a brown solid (mixture of isomers), ${ }^{1} \mathrm{H}$ NMR $\delta 6.69-7.56(\mathrm{~m}, 2 \mathrm{H}), 5.86-6.69(\mathrm{~m}, 4 \mathrm{H}), 4.42$ (s, $4 \mathrm{H}), 2.16-2.78(\mathrm{~m}, 4 \mathrm{H})$. To a solution of the latter compound (0.01 g) in THF (10 mL) was added dropwise a solution of KO-t-Bu (6 equiv) in t-BuOK (32 mL) and THF (4 mL). The solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at $25^{\circ} \mathrm{C}$ for 1 h , diluted with water (20 mL), and extracted with hexane; the hexane layer was washed with water (6 times), dried (MgSO_{4}), and diluted with hexane to 100 mL . The solution showed a UV spectrum identical with that reported for 1,3,5,7,9-decapentaene ($\lambda_{\max } 333,317,302,289 \mathrm{~nm}$); the yield calculated on the basis of the reported ${ }^{29 \mathrm{a}}$ extinction coefficient of 121000 at 333 nm was 18%

Addition of 2 to Alkynes and Reaction of the Adducts with Base 2-Ethylhex-1-en-3-yne. General Procedure F. A mixture of 3-hexyne (1.6 $\mathrm{g}, 0.02 \mathrm{~mol})$ and $2(2.38 \mathrm{~g}, 0.01 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was irradiated at $-20^{\circ} \mathrm{C}$ as above for 2 h . A small amount of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added and then removed by filtration. The solution was concentrated in vacuo to give 3-bromo-4-[(bromomethyl)sulfonyl]-hex-3-ene ($2.73 \mathrm{~g}, 85 \%$ yield) as a solid (from EtOH): mp $96-97{ }^{\circ} \mathrm{C}$; IR $2970(\mathrm{~m}), 1610$ (s), 1320 (s). $1160(\mathrm{~s}), 1130(\mathrm{~s}), 750 \mathrm{~cm}^{-1}(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.42$ (s, 2 H). 3.12 (q, 2 H), $2.69(\mathrm{q}, 2 \mathrm{H}), 1.51-0.93(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 151.1,137.2,43.6$, 33.8, 29.2, 14.2, 12.5.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}$: $\mathrm{C}, 26.27 ; \mathrm{H}, 3.78$. Found: $\mathrm{C}, 26.45$; H, 3.88 .

The latter compound ($3.2 \mathrm{~g}, 0.01 \mathrm{~mol}$) was dissolved in 15 mL of $1: 2$ $\mathrm{THF} / t-\mathrm{BuOH}$ and added dropwise to an ice cold solution of KO-t -Bu
($4.5 \mathrm{~g}, 0.04 \mathrm{~mol}$) in 66 mL of $1: 10 \mathrm{THF} / t-\mathrm{BuOH}$. The reaction mixture was diluted with water and extracted with pentane. The combined organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered and the solvent removed by distillation to give an oil. Flash distillation gave 0.43 g (46% yield) of 2-ethylhex-1-en-3-yne: IR 2250, $1620,1470,900 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.25-4.94$ (m, 2 H), 2.37-1.75 (m, 5 H), 1.37-0.72 (m, 3 H); ${ }^{13}$ C NMR $\delta 133.9,118.5,85.4,30.7,12.9,4.1$.

Reaction of 2 with Propyne. A mixture of propyne $(3.2 \mathrm{~g}, 0.08 \mathrm{~mol})$ and $2(4.76,0.02 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was irradiated at $-23^{\circ} \mathrm{C}$ for 1 h . The solution then was concentrated in vacuo to give an oil which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with NaHSO_{3} solution ($2 \times$), water, and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration and flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 2-bromopropenyl bromomethyl sulfone ($1.39 \mathrm{~g}, 25 \%$) and 4-bromo-2-methyl-1,3-pentadienyl bromomethyl sulfone ($0.53 \mathrm{~g}, 8 \%$). The former compound was a colorless solid: mp $60-61^{\circ} \mathrm{C}$; IR 3030 (m), 2945 (m), 1618 (s), 1369 (vs), 1328 (vs), 1140 (vs), $1160 \mathrm{~cm}^{-1}(\mathrm{vs}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.76$ (q, 2 H), 4.41 (s, 2 H), 2.85 (d $J=2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 146.3,126.4,44.1,26.0$

Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 17.28 ; \mathrm{H}, 2.18$. Found: $17.45 ; \mathrm{H}$, 2.21

The second compound was a colorless glass-wool-like solid: mp $103-106{ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR $\delta 7.36(\mathrm{q}, 1 \mathrm{H}), 6.67(\mathrm{q}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 2.81$ (d, $3 \mathrm{H}, J=2 \mathrm{~Hz}$), $2.54\left(\mathrm{~d}, 3 \mathrm{H}, J=2 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 155.6,146.8$, 130.8, 127.1, 43.4, 25.8, 12.8.

Addition of 2 to Silyl Enol Ethers and Conversion of Adducts to α Alkylidene Ketones: 2-Methylenecycloheptanone (23). ${ }^{19}$ General Procedure G. A solution of 1-(trimethylsiloxy)cycloheptene ${ }^{43 \mathrm{a}}$ (21) (1.84 g) and $2(3.33 \mathrm{~g})$ in 4 mL of ethylene oxide was irradiated at $-15^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a small quantity of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added, and the solution was filtered, concentrated in vacuo, and subjected to high vacuum for 1 h giving 2.1 g (69% yield) of 2-[(bromomethyl)sulfonyl]cycloheptanone (22) which was distilled giving a thick pale yellow oil: bp $152-154^{\circ} \mathrm{C}(0.035 \mathrm{~mm})$; IR 1700 (vs), 1460 (s), 1320 (vs), 1145 (vs), $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.63$ (AB q, $J=$ $10.5,2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.32 (dd, 1 H), 2.88-1.03 (br m, 10 H). The latter compound (0.54 g) was dissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to -78 ${ }^{\circ} \mathrm{C}$ at which temperature it was treated dropwise with stirring with a solution of DBN $(0.62 \mathrm{~g})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was allowed to warm slowly to room temperature and then was stirred for 0.5 h . The reaction mixture was washed with dilute $\mathrm{HCl}(2 \times 25 \mathrm{~mL})$ and water (25 mL). The organic layer was separated and dried and the solvent removed in vacuo giving an oil. Distillation gave 0.19 g of 2methylenecycloheptanone (23; 77\% yield) as a colorless oil: IR 1690 (vs), $1610(\mathrm{~s}), 1005(\mathrm{~m}), 940 \mathrm{~cm}^{-1}(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.91(\mathrm{~d}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1$ H), 2.54 (br s, 4 H), 1.75 (br s, 6 H); ${ }^{!3} \mathrm{C}$ NMR δ 203.6, 148.4, 122.5, 43.5, 33.9, 31.3, 30.6, 25.4.

2-[(Bromomethyl)sulfonyl]-3-pentanone. Following procedure G, 2 was added to 3 -(trimethylsiloxy)-2-pentene giving 2-bromomethane-sulfonyl-3-pentanone, an oil (81%) which solidified. Recrystallization $\left(\mathrm{CCl}_{4}\right)$ gave colorless crystals, $\mathrm{mp} 57-58^{\circ} \mathrm{C}$.
[(Iodomethyl)sulfonyl]acetophenone. As in procedure G, 4 was added to 1-(trimethylsiloxy)-1-phenylethylene giving the title compound as a solid (100%). Recrystallization ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) gave light yellow crystals, mp 99-100 ${ }^{\circ} \mathrm{C}$.
(43) (a) House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. J. Org Chem. 1969, 34, 2324-2336. (b) Hauser, C. F.: Brooks, T. W.; Miles, M. L.; Raymond, M. A.; Butler, G. B. J. Org. Chem. 1963, 28, 372-379.
(44) Dang, H. P.; Linstrumelle, G. Tetrahedron Lett. 1978, 191-194.
(45) Halazy, S.; Krief, A. Tetrahedron Lett. 1980, 21, 1997-2000.
(46) Nunomoto, S.; Kawakami, Y.; Yamashita, Y. Bull. Chem. Soc. Jpn. 1981, 54, 2831-2832.
(47) Frey, H. M.; Solly, R. R. J. Chem. Soc. A 1969, 733-735
(48) Patel, B. A.; Heck, R, F. J. Org. Chem. 1978, 43, 3898-3903
(49) Markgraf, J. H.; Greeno, E. W.; Miller, M. D.; Zaks, W. J. Terrahedron Lett. 1983, 24, 241-244.
(50) Salomon, R. G.; Sinha, A.; Salomon, M. F. J. Am. Chem. Soc. 1978, 100, 520-526
(51) Van Straten, J. W.; Van Norden, J. J.; Van Schauk, T. A. M.; Franke, G. T.; De Wolf, W. H.; Bickelhaupt, F. Recl. Trav. Chim. Pays-Bas 1978, 97, 105-106.
(52) Corey, E. J.; Cane, D. E. J. Org. Chem. 1969, 34, 3053-3057.
(53) Bloch, R.; Abecassis, J. Tetrahedron Lett. 1983, 24, 1247-1250.
(54) Yasuda, H.; Ohnuma, Y.; Yamauchi. M.; Tani, H.; Nakamura, A. Bull. Chem. Soc. Jpn. 1979, 52, 2036-2045.
(55) Dare, D. L.; Entwistle, I. D.; Johnstone, R. A. W. J. Chem. Soc., Perkin Trans. I 1973, 1130-1134
(56) Vig, O. P.; Vig, A. K.; Kumar, S. D. Indian J. Chem. 1975, I3, 1244-1246.
(57) Alder, K.; Brachel, H. V. Justus Liebigs Ann. Chem. 1957, 608 , 195-215.
(58) Hubert, A. J. Chem. Ind. (London) 1968. 975-976
(59) Anzilotti, W. F.; Vogt, R. R. J. Am. Chem. Soc. 1939, 61, 572-573.

Preparation of 1,3-Oxathiole 3,3-Dioxides: 4-Methyl-5-ethyl-1,3-oxathiole 3,3-Dioxide. General Procedure H. 2-[(Chloromethyl)-sulfonyl]-3-pentanone ($0.99 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in EtOH (25 mL), and a solution of DBN ($1.55 \mathrm{~g}, 13 \mathrm{mmol}$) in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added dropwise. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and concentrated and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with dilute $\mathrm{HCl}(50 \mathrm{~mL})$ and water (50 mL), and the organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give an oil. Kugelrohr distillation $\left(100^{\circ} \mathrm{C}, 0.1 \mathrm{~mm}\right)$ gave a colorless liquid ($0.44 \mathrm{~g}, 54 \%$): IR $1670(\mathrm{~s})$, $1440(\mathrm{~m}), 1300(\mathrm{vs}), 1155(\mathrm{vs}), 1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.83$ (s, 2 H), 2.37 (q, 2 H), $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 163.2,106.8,80.1$, 21.9, 10.2, 4.2.

8,10-Oxathiabicyclo[5.3.0]dec-1(7)-ene 10,10-Dioxide (24). As in procedure $\mathrm{H}, 2$-[(chloromethyl)sulfonyl]cycloheptanone gave 24 as a solid (81%) which gave colorless crystals, $\mathrm{mp} 55-56^{\circ} \mathrm{C}$, from petroleum ether: IR 1660 (s), 1440 (m), 1290 (vs), 1130 (vs), $810(\mathrm{~m}), 790 \mathrm{~cm}^{-1}$ (m); ${ }^{1} \mathrm{H}$ NMR $\delta 4.85$ (s, 2 H), 2.44 (br s, 4 H), 1.77 (br s, 6 H); ${ }^{13} \mathrm{C}$ NMR $\delta 165.58$ 112.7, 80.7, 31.5, 29.9, 27.4, 24.4, 18.8.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 51.04 ; \mathrm{H}, 6.43 ; \mathrm{S}, 17.03$. Found: C , 51.11 ; H, 6.36; S, 17.31.

9-Methyl-8, 10-oxathiabicyclo[5.3.0]dec-1(7)-ene 10,10-Dioxide (28). A solution of 8,10-oxathiabicyclo[5.3.0]dec-1(7)-ene 10,10-dioxide (0.75 $\mathrm{g}, 4 \mathrm{mmol}$) in dry THF (20 mL) was placed in a dry three-necked flask under argon and then treated at $-78^{\circ} \mathrm{C}$ with n-butyllithium (4 mmol). After 15 min a solution of methyl iodide ($0.57 \mathrm{~g}, 4 \mathrm{mmol}$) in dry THF (5 mL) was added. The reaction mixture was warmed to $25^{\circ} \mathrm{C}$, water (50 mL) was added, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and the organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give an oil. Kugelrohr distillation (0.025 mm) gave a colorless liquid ($0.6 \mathrm{~g}, 74 \%$).
(E,Z)-2-Ethylidenecycloheptanone and 28. As in procedure $G, 3$ was added to 1-(trimethylsiloxy)cycloheptene giving 2-[(1-bromoethyl)sulfonyl]cycloheptanone as a solid (28%), $\mathrm{mp} 98^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-pentane). Treatment of this product with DBN in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ according to procedure G gave an oil (54% yield) which by GC and NMR analysis was found to consist of $48 \%(E)$ - and $4 \%(Z)$-2-ethylidenecycloheptanone (GC $t_{\mathrm{R}} 7.35$ and 5.78 min at $120^{\circ} \mathrm{C}$) and 3% of 28 (identical with authentic material as prepared above); IR 2950 (s), $1700(\mathrm{~s}), 1680 \mathrm{~cm}^{-1}$ (s); ${ }^{1} \mathrm{H}$ NMR $\delta 6.40(\mathrm{q}, J=2.5 \mathrm{~Hz}, E$ isomer), $5.63(\mathrm{q}, J=2.5 \mathrm{~Hz}, Z$ isomer), $2.50(\mathrm{t}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 13 \mathrm{H})$.

Preparation of 1-Isopropoxy-2,4-pentadiene from 1,3-Butadiene. A solution of 1,3 -butadiene ($6.4 \mathrm{~g}, 0.12 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was mixed with a solution of $2(23.8 \mathrm{~g}, 0.1 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The reaction mixture was irradiated for 1 h and worked up as in procedure A to give 4 -bromo-2-butenyl bromomethyl sulfone ($27.0 \mathrm{~g}, 93 \%$), ${ }^{1} \mathrm{H}$ NMR $\delta 5.96(2 \mathrm{H}, \mathrm{m}), 4.40(2 \mathrm{H}, \mathrm{s}), 3.94(4 \mathrm{H}, \mathrm{d})$. Application of procedure C to the latter sulfone ($27.0 \mathrm{~g}, 0.092 \mathrm{~mol}$) using 1.2 equiv of $\mathrm{Et}_{3} \mathrm{~N}$ gave 1,3-butadienyl bromomethyl sulfone ($13 \mathrm{~g}, 95 \%$), ${ }^{1} \mathrm{H}$ NMR $\delta 7.53-5.43(5 \mathrm{H}, \mathrm{m}), 4.50(2 \mathrm{H}, \mathrm{s})$. A solution of this latter compound $(4.22 \mathrm{~g}, 0.02 \mathrm{~mol})$ in dry $i-\mathrm{PrOH}(25 \mathrm{~mL})$ was added dropwise to a solution prepared by dissolving sodium ($1.38 \mathrm{~g}, 0.06 \mathrm{~mol}$) in dry $i-\mathrm{PrOH}$ $(50 \mathrm{~mL})$. The mixture was stirred for 1 h , diluted with water (100 mL), and extracted with pentane $(2 \times 30 \mathrm{~mL})$. The combined pentane extracts were washed with water ($3 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concen-
trated, and the residue was purified by trap-to-trap distillation giving (E) and (Z)-1-isopropoxy-2,4-pentadiene $(1.4 \mathrm{~g}, 56 \% ; 49 \%$ overall yield from 1,3-butadiene) in a $3: 1$ ratio (by GC) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR δ 6.68-4.78 (m, 5 H$), 3.99(\mathrm{~d}, 2 \mathrm{H}), 3.6(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 138.6,136.5,132.5,131.0,117.0,115.7,79.0,71.0,68.6,68.2,22.4$, 22.2.

Preparation of 2-[[(Bromomethyl)sulfonyl]methylene]adamantane (39) and Reaction with KO-t-Bu. 2-Methyleneadamantane was prepared in 66% yield from 2 -adamantanone by procedure B. Addition of 2 to 2-methyleneadamantane via procedure A gave 2-bromo-2-[[(bromomethyl)sulfonyl]methyl]adamantane in nearly quantitative yield. Procedure C gave with this latter compound ($3.85 \mathrm{~g}, 0.01 \mathrm{~mol}$; refluxing CHCl_{3}) 39 as a colorless solid ($2.66 \mathrm{~g}, 88 \%$): ${ }^{1} \mathrm{H}$ NMR $\delta 5.96(\mathrm{~s}, 1 \mathrm{H})$, 4.31 ($\mathrm{s}, 2 \mathrm{H}$), 3.72 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 2.47 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 1.95 ($\mathrm{brs}, 12 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 175.7,113.6,44.6,41.5,40.0,39.6,39.2,36.3,33.0,27.4$.

Sulfone $39(1.21 \mathrm{~g}, 4 \mathrm{mmol})$ was dissolved in t - $\mathrm{BuOH}-$ THF $(40 \mathrm{~mL} / 8$ mL), cooled in ice, and treated with KO- t - $\mathrm{Bu}(1.4 \mathrm{~g}, 12 \mathrm{mmol}$). The reaction mixture was stirred for 3 h at $25^{\circ} \mathrm{C}$, diluted with water (50 mL), and extracted with pentane ($2 \times 25 \mathrm{~mL}$). The pentane layer was washed with water ($2 \times 25 \mathrm{~mL}$), dried, and concentrated giving a solid (0.62 g). Preparatory TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave equal amounts of three components, namely, unreacted 39, and compounds identified as 2 [[(dibromomethyl)sulfonyl]methylene]adamantane (42), and 2-[(methylsulfonyl)methylene]adamantane (41). Compound 42 ($0.2 \mathrm{~g}, 13 \%$), after recrystallization from hexane, gave colorless crystals: mp 137-138 ${ }^{\circ} \mathrm{C}$; IR 1615 (s), 1315 (s), 1140 (vs), $815 \mathrm{~cm}^{-1}$ (s); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 6.07(\mathrm{~s}, 2 \mathrm{H}), 3.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.55(\mathrm{brs}, 1 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 12 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.96(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 1.58$ (br s, 12 H); ${ }^{13} \mathrm{C}$ NMR δ 179.2, 109.6, 51.2, 42.1, 40.1 (2 C), 39.4 (2 C), $36.4,33.3,27.5$ (2 C).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S}$: $\mathrm{C}, 37.52 ; \mathrm{H}, 4.20$. Found: $\mathrm{C}, 37.60$; H, 4.23. MW calcd 384, found (cryoscopically) 367.

Compound 41: IR $1620(\mathrm{~m}), 1290(\mathrm{vs}), 1130 \mathrm{~cm}^{-1}$ (vs); ${ }^{1} \mathrm{H}$ NMR δ $6.00(1 \mathrm{H}, \mathrm{s}), 3.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93(\mathrm{br}$ s, 12 H); ${ }^{13} \mathrm{C}$ NMR $\delta 170.5,118.7,44.5,40.8,39.8$ (2 C), 36.4, 32.8, 27.4 (2C).

Acknowledgment. We thank Professor Jon Zubieta for assistance in the determination of the X-ray structures and gratefully acknowledge support from the National Science Foundation, the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Societe Nationale Elf Aquitaine (EB), and the National Institutes of Health (K.G., J. H.). The SUNY-Albany $300-\mathrm{MHz}$ NMR facility is funded in part by a grant from the National Science Foundation.

Supplementary Material Available: Analytical techniques and physical data for identifying products and intermediates and tables of X-ray crystal structure data for (E)-1-[[(bromomethyl)-sulfonyl]methylene]-3-methylcyclohexane, 7,9-oxathiabicyclo-[4.3.0]non-1(6)-ene 9,9-dioxide, and 2-[[(dibromomethyl)sulfonyl]methylene]adamantane (25 pages). Ordering information is given on any current masthead page.

[^0]: ${ }^{\dagger}$ Fellow of the John Simon Guggenheim Foundation, 1984-1985.

[^1]: (1) Reviews: (a) Bordwell, F. G. In Organosulfur Chemistry; Janssen, M. J., Ed.; Interscience: New York, 1967; Chapter 16. (b) Paquette, L. A. Org. React. (N. Y.) 1977, 25, 1-71. (c) Block, E. Reactions of Organosulfur Compounds; Academic Press: New York, 1978; p 77.
 (2) (a) The material covered in this paper is the subject of U.S. Patent Application No. 523276, filed by the Research Foundation of the State University of New York. (b) Preliminary communications. Part 1: Block, E.; Aslam, M. J. Am. Chem. Soc. 1983, I05, 6164-6165. Part 2: Block, E.; Aslam, M.: Eswarakrishnan, V.; Wall, A. J. Am. Chem. Soc. 1983, 105 , 6165-6167. Part 3: Block, E.; Aslam, M.; lyer, R.; Hutchinson, J. J. Org. Chem. 1984, 49, 3664-3666. Part 4: Block, E.; Eswarakrishnan, V.; Gebreyes. K. Tetrahedron Lett. 1984, 25, 5469-5472. Also see: Block, E.; Aslam, M. Organic Syntheses; Wiley: New York, in press.
 (3) (a) Goldwhite, H.; Gibson, M. S.; Harris, C. Tetrahedron 1964, 20, 1613-1624. (b) Asscher, M.; Vofsi, D. J. Chem. Soc. 1964, 4962-4971.
 (4) Boll, W. Liebigs Ann. Chem. 1979, 1665-1674
 (5) Kostova, A. G. Tr. Voronezh. Gos. Univ. 1935, 88 92-117; Chem. Abstr. 1938, 32, 6618.
 (6) Carpino, L. A.; McAdams, L. V., 111; Rynbrandt, R. H.; Spiewak, J. W. J. Am. Chem. Soc. 1971, 93, 476-484

[^2]: (7) Truce, W. E.; Wolf, G. C. J. Org. Chem. 1971, 36, 1727-1732. Cristol, S. J.; Davies, D. I. J. Org. Chem. 1963, 28, 372-379.

[^3]: (8) Pillot, J. P.; Dunogues, J.; Calas, R. Synthesis 1977, 469
 (9) (a) Cremer, D. J. Am. Chem. Soc. 1979, 101, 7199-7205. (b) Block, E.; Penn, R. E.; Bazzi, A. A.; Cremer, D. Tetrahedron Lett. 1981, 22, 29-32. (c) Houk, K. N.; Strozier, R. W.; Rondan, N. G.; Fraser, R. R.; ChuaquiOffermanns, N. J. Am. Chem. Soc. 1980, 102, 1426-1429 and references therein.
 (10) Naf, F.; Decorzant, R.; Escher, S. D. Tetrahedron Lett. 1982, 23, 5043-5046.
 (11) (a) Bloch, R.; Abecassis, J. Tetrahedron Lett. 1982, 23, 3277-3280. (b) Babler, J. H.; Invergo, B. J. J. Org. Chem. 1979, 44, 3723-3724. (c) Snider, B. B.; Phillips, G. B. J. Org. Chem. 1983, 48, 464-469. (d) Hayashi, T.; Yanagida, M.; Matsuda, Y.; Oishi, T. Tetrahedron Lett. 1983, 24, 2665-2668. (e) Yamamoto, Y.; Saito, Y.; Maruyama, K. Tetrahedron Lett. 1982, 23, 4597-4600 and refeences therein.

[^4]: ${ }^{\circ}$ Overall yield of distilled product. ${ }^{b} 9 \%$ 3-methyl-1,3-octadiene. ${ }^{c} 9 \%$ 3-methyl-1,3-nonadiene. ${ }^{d} 11 \% 3,7$-dimethyl-1,3,6-octatriene. ${ }^{\circ} 8 \%$ 3,6-di-methyl-1,3-heptadiene. 88% 3-methyl-1,3-dodecadiene. ${ }^{8} \mathrm{GC}$ analysis indicated $<1 \% \mathrm{Z}$ isomer. ${ }^{h} \mathrm{Et}_{3} \mathrm{~N}$ step omitted. ${ }^{i}$ Isomers not resolved by GC . ${ }^{\prime}$ Two equivalents of diene used. ${ }^{k}$ Includes ca. 5% of $1,3,9,11$-dodecatetraene. ${ }^{l}$ Two equivalents of 2 used. ${ }^{m} \mathrm{Ca} .80 \% Z, Z .{ }^{n}<2 \% Z$ isomer. ${ }^{\circ} \mathrm{GC}$ yield 24%. ${ }^{\rho} \mathrm{At}-26^{\circ} \mathrm{C}$ ratio is $1.6: 1$. ${ }^{9}$ Stereochemistry about trisubstituted double bond unknown. ${ }^{\prime} \mathrm{CH}_{3} \mathrm{CHBrSO} \mathrm{CH}^{\mathrm{Br}}$. ${ }^{\prime} \mathrm{Also}$ contains ca. 3% yield of $1,3,5$-cyclooctatriene. 'Estimated by UV analysis. "For comparison purposes, when product is known overall yield for recent synthesis is given in parenthesis with literature reference as superscript. In many cases the starting materials for the published synthesis are not as readily available as the substrates indicated in the table.

[^5]: (13) Meyers, C. Y.; Sataty, I. Tetrahedron Lett. 1972, 4323-4326. Sataty, I. Ph.D. Thesis, Southern Illinois University, Carbondale, IL, 1970. Truce, W. E.; Lusch, M. J. J. Org. Chem. 1978, 43, 2252-2258. Also note: Mikolajczyk, M.; Grzejzczak, S.; Zatorski, A. J. Org. Chem. 1975, 40 , 1979-1984.
 (14) Anthony. A.; Maloney, T. J. Org. Chem. 1972, 37, 1055-1056. Also see: Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 25, 495-498 for related work.

[^6]: (15) Truce, W. E.; Amos, M. F. J. Am. Chem. Soc. 1951, 73, 3013-3017; Wolfe, S.; La John, L. A.; Weaver, D. F. Tetrahedron Lett. 1984, 25 , 2863-2866. Trost, B. M.; Schmuff, N. R. J. Am. Chem. Soc. 1985, 107 , 396-405. Gais, H.-J.; Lindner, H. J.; Vollhardt, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 859-860.
 (16) Eisch, J. J.; Galle, J. E. J. Org. Chem. 1979, 44, 3279-3280.
 (17) Harris, F. L.; Weiler, L. Tetrahedron Lett. 1984, 25, 1333-1 336.
 (18) Kuroki, Y.; Murai, S.; Sonoda, N.; Tsutsumi, S. Organomet. Chem. Synth. 1972, I, 465-466. (b) Meanwell, N. A.; Johnson, C. R. Synthesis 1982, 283-284.

[^7]: (19) Kasandr, G. M.; McMurry, J. E.; Johnson, M. J. Org. Chem. 1977, 42, 1180-1185; Ryu, I.; Matsumoto, K.; Ando, M.; Murai, S.; Sonoda, N. Tetrahedron Lett. 1980, 21, 4283-4286. Shono, T.; Nishiguchi, I.; Komamura, T.; Sasaki, M. J. Am. Chem. Soc. 1979, 101, 984-987. Danishefsky, S.; Prisbylla, M.; Lipisko, B. Tetrahedron Lett. 1980, 21, 805-808.

[^8]: (20) Ho, T. L. Hard and Soft Acids and Bases Principle in Organic Chemistry; Academic Press: New York, 1977.
 (21) Since secondary carbons are considered harder than primary carbons, it is necessary to invoke steric effects to explain our results.
 (22) (a) Dickore, K. Liebigs Ann. Chem. 1964, 67I, 135-146. (b) Nozaki, H.; Takaku, M.; Hayashi, Y.; Kondo, K. Tetrahedron 1968, 24, 6563-6572. Elliott, A. J. In Comprehensive Heterocyclic Chemistry; Katrizky, A. R., Rees C. W., Eds.; Pergamon Press: New York, 1984; Vol. 6, p 749.
 (23) Hwa, J. C. H.; Sims, H. Organic Syntheses; Wiley: New York, 1973; Collect. Vol. V, pp 608-612.
 (24) Moore, R. E.; Pettus, J. A., Jr.; Mistysyn, J. J. Org. Chem. 1974, 39 2201-2207. Nâf, F.; Decorzant, R.; Thommen, W.; Willhalm, B.; Ohloff, G. Helv. Chim. Acta 1975, 58, 1016-1037. Giraudi, E.; Teisseire, P. Tetrahedron Lett. 1983, 24, 489-492. Hayashi, T.; Yanagida, M.; Matsuda, Y.; Oishi, T Tetrahedron Lett. 1983, 24, 2665-2668.
 (25) Jaenicke, L.; Seferiadis, K. Chem. Ber. 1975, 108, 225-232; Wiedenmann, B.; Hopf, H. Z. Z. Naturforsch. B 1977, 32, 119. Schneider, M. P. Goldbach, M. J. Am. Chem. Soc. 1980, 102, 6114-6116.

[^9]: (26) Bates, R. B.; Gosselink, D. W.; Kaczynski, J. A. Tetrahedron Lett. 1967, 199-204
 (27) Davies, A. W.; Griller, D.; Ingold, K. U.; Lindsay, D. A.; Walton, J.
 C. J. Chem. Soc., Perkins Trans. 2 1981, 633-641.
 (28) Spangler, C. W. Tetrahedron 1976, 32, 2681-2684.

[^10]: (29) (a) Sondheimer, F.; Ben-Efraim, D. A.; Wolovsky, R. J. Am. Chem. Soc. 1961, 83, 1675-1681. (b) D'Amico, K. L.; Manos, C.; Christensen, R L. J. Am. Chem. Soc. 1980, 102, 1777-1782. (c) Woods, G. F.; Schwartzman, L. H. J. Am. Chem. Soc. 1949, 71, 1396-1399. (d) Lippincott, E. R.; Feairheller, W. R., Jr.; White, C. E. J. Am. Chem. Soc. 1959, 81, 1316-1321. (e) Gavin, R. M., Jr.; Weisman, C.; McVey, J. K.; Rice, S. A. J. Chem. Phys. 1978, 68, 522-529. (f) Hayashi, T.; Hori, I.; Oishi, T. J. Am. Chem. Soc. 1983, IO5, 2909-2911.
 (30) For other examples of syntheses of polyenes using the RambergBācklund reaction, see: Buchi, G.; Freidinger, R. M. J. Am. Chem Soc. 1974, 96, 3332-3333. Näf, F.; Decorzant, R.; Escher, S. D. Tetrahedron Lett. 1982, 23, 5043-5046. Grieco, P. A.; Boxler, D. Synth. Commun. 1975, 5, 315-318. (31) For other examples of addition of sulfonyl radicals to alkynes, see: Back, T. G.; Collins, S. Tetrahedron Lett. 1981, 5111-5114. Miura, T.; Kobayashi, M. J. Chem. Soc., Chem. Commun. 1982, 438-439 and ref 7.

[^11]: (32) Leedham, K.; Haszeldine, R. N. J. Chem. Soc. 1954, 1634-1638.
 (33) Gancarz, R. A.; Kice, J. L. Tetrahedron Lett. 1980, 21, 4155-4158.
 (34) Burger, J. J.; Chen, T. B. R. A.; de Waard, E. R.; Huisman, H. O. Tetrahedron 1980, 36, 1847-1850. Jonczyk, A.; Radwin-Pytlewski, T. Chem. Lett. 1983, 1557-1560.
 (35) Chen, T. B. R. A.; Burger, J. J.; de Waard, E. R.; Huisman, H. Tetrahedron Lett. 1977, 4527-4530.

[^12]: (36) Paquette, L.; Wittenbrook, L. S. Organic Syntheses; Wiley: New York, 1973; Collect. Vol. V, pp 231-234
 (37) Bost, R. W.; Constable, E. W. Organic Syntheses; Wiley: New York, 1943; Collect. Vol. II, pp 610-611.

